Основные понятия и определения химической термодинамики
Система - тело или группа тел, мысленно выделенных из окружающей среды. Системы подразделяют на следующие виды:
1 фаза 2 фаза
Открытая - система, которая может обмениваться с окружающей средой энергией и веществом (открытая колба с раствором, из которой может испаряться растворитель и которая может нагреваться и охлаждаться окружающей средой).
Закрытой - называют систему, з которой отсутствует обмен веществом с окружающей средой, но она может обмениваться с ней энергией и работой (плотно закрытая колба с раствором. из которой не может испариться растворитель, но она может нагреваться и охлаждаться окружающей средой).
Изолированной - называется система, не обменивающаяся веществом и энергией с внешней средой (раствор, помещенный в закрытый сосуд, стенки которого изготовлены из идеального теплоизоляционного материала).
Гомогенная - система, в которой каждый параметр ее во всех частях системы имеет одно и то же значение или непрерывно изменяется от точки к точке. Гомогенная система состоит из одной фазы.
Гетерогенная - состоит из нескольких макроскопических частей фаз), отделенных одна от другой видимыми поверхностями раздела (лед-вода вода-бензол).
Фаза - гомогенная часть системы, отделенная от других частей системы поверхностью раздела.
Состояние системы характеризуется совокупностью всех химических и физических свойств.
| Физические, химические свойства |
| ||||
Интенсивные |
|
|
| Экстенсивные | ||
|
|
| ||||
| Интенсивные термодинамические свойства |
| ||||
|
|
| ||||
Параметры |
|
|
| Функции | ||
|
|
| ||||
| Состояние системы |
|
Свойства, которые зависят от массы и которые выравниваются при контакте систем, называют интенсивными (температура, давление, плотность, концентрация, химический потенциал).
Свойства, которые не зависят от массы, называют экстенсивными (объем, масса, теплоемкость, внутренняя энергия, энтальпия, энтропия).
В термодинамике рассматривают те свойства, которые могут быть выражены через функции температуры, давления и концентрации веществ системы. Такие свойства называются термодинамическими (теплоемкость, внутренняя энергия, энтропия). Термодинамические свойства системы взаимосвязаны между собой. Для полного описания состояния системы достаточно бывает знать некоторое наименьшее число термодинамических свойств, которые называются параметрами состояния системы. Обычно в качестве параметров выбирают такие свойства системы, которые наиболее легко определяются экспериментально (Р, V, Т, с).
Свойства системы, которые не поддаются непосредственному измерению (внутренняя энергия, энтальпия), рассматривают как функции основных параметров состояния (функции состояния).
При переходе системы из одного состояния в другое изменяются ее свойства. Изменение свойств не зависит от пути перехода, а определяется лишь начальным и конечным состоянием системы, т.е. значениями термодинамических параметров в этих двух состояниях.
Система состояния 1 | процесс | Система состояния 2 | ||||||
|
|
|
| |||||
| самопроизвольный |
| несамопроизвольный |
| ||||
|
|
|
| |||||
равновесный |
| неравновесный |
|
| ||||
|
|
|
| |||||
обратимый |
| необратимый |
|
| ||||
|
|
|
|
Если, наблюдая за какой-то определенной системой, установим, что в ней изменяется во времени хотя бы одно из термодинамических свойств, то это значит, что в системе протекает термодинамический процесс. Если при протекании процесса наблюдается изменение химического состава системы, то процесс называют химической реакцией.
Все процессы в природе можно разделить на самопроизвольные (естественные) и несамопроизвольные.
Самопроизвольные - такие процессы, которые не требуют затраты энергии из внешней среды (переход теплоты от более нагретого тела к менее нагретому, растворение соли в воде).
Несамопроизвольные процессы требуют для своего протекания затраты энергии (разделение смеси газов на составляющие компоненты).
В результате самопроизвольного процесса в изолированной системе устанавливается равновесное состояние.
Под равновесным состоянием понимают такое состояние системы, которое сохраняется неизменным во времени, и это состояние не поддерживается каким-либо внешним процессом по отношению к системе.
Равновесным термодинамическим процессом называют процесс, который протекает бесконечно медленно и через непрерывный ряд состояний, бесконечно близких к разновесным состояниям.
Процесс, при котором система проходит через неравновесные состояния, называется неравновесным. Неравновесный процесс в изолированной системе будет протекать до тех пор, пока в ней не наступит равновесное состояние.
Система, совершившая равновесный процесс, может вернуться в исходное положение, пройдя в обратном процессе те же равновесные состояния, которые она проходила в прямом процессе. Это свойство равновесного процесса называется его обратимостью.
Поэтому, обратимым называют равновесный процесс, который может возвратиться в первоначальное состояние без каких-либо энергетических изменений в окружающей среде или в самой системе под влиянием бесконечно малой силы.
Если система или окружающая среда не могут возвратиться в первоначальное состояние, т.е. в них останутся изменения, то процесс называют необратимым.
Говорить об обратимых и необратимых процессах можно лишь для изолированных систем. Для неизолированных систем применяют термины «равновесная» и «неравновесная».
Термодинамический процесс вызывает энергетические изменения в системе, которые выражаются через изменение определенных величин: внутренней энергии, энтальпии, теплоты, работы.
- Предисловие
- Введение
- Роберт Вильгельм Бунзен
- Анри Луи Ле Шаталье
- Вильгельм Фридрих Оствальд
- Сванте Август Аррениус
- Якоб Генрих Вант-Гофф
- Иоханн Николаус Брёнстед и Михаил Ильич Усанович
- Николай Николаевич Семенов
- Химическая термодинамика учебно-целевые задачи – научить студентов:
- Значимость темы
- Основные понятия и определения химической термодинамики
- Внутренняя энергия
- Теплота и работа
- Первый закон термодинамики
- Применение I закона к простейшим процессам
- Тепловые эффекты. Закон гесса
- Теплоемкость
- Второй закон термодинамики
- Некоторые формулировки 2-го закона
- Изменение энтропии при различных процессах
- Пастулат планка
- Термодинамические потенциалы
- Соотношение между термодинамическими потенциалами
- Закон действующих масс
- Вопросы по теме: "термодинамика"
- Примеры решения типовых задач
- Пример решения контрольного задания по теме "Термодинамика"
- Решение
- Задачи для самостоятельной работы
- Варианты заданий для домашней контрольной работы
- Лабораторная работа №1.
- Особые условия выполнения работы:
- Устройство и настройка термометра Бекмана
- Термодинамика фазовых превращений
- Термодинамика фазовых равновесий
- Основные понятия
- Уравнение клайперона-клаузиуса
- Диаграммы состояния однокомпонентных систем
- Диаграмма состояния воды
- Диаграмма состояния диоксида углерода
- Бинарные системы Диаграммы плавкости
- Взаимная растворимость жидкостей
- Трехкомпонентные системы
- Равновесие жидкость-жидкость в трехкомпонентных системах.
- Распределение растворяемого вещества между двумя жидкими фазами. Экстракция.
- Вопросы для подготовки к занятиям по теме: "термодинамика фазовых равновесий".
- Примеры решения типовых задач.
- Задачи для самостоятельной работы.
- Лабораторная работа 1: построение диаграммы плавкости 2-х компонентной системы с простой эвтектикой.
- Лабораторная работа № 2. Изучение взаимной растворимости фенола и воды.
- Лабораторная работа № 3. Определение коэффициента распределения уксусной кислоты между водой и бензолом.
- Свойства разбавленных растворов электролитов и неэлектролитов.
- Повышение температуры кипения растворов.
- Понижение температуру замерзания растворов.
- Биологическое значение осмотического давления
- Указания к выполнению работы.
- Вопросы для самоконтроля по технике выполнения работы
- Вопросы для самоконтроля при выполнении данного задания
- Вопросы и задачи для самоконтроля усвоения темы
- Вопросы для самоконтроля усвоения материала практической работы
- Биологический статус изучаемой темы
- Вопросы для подготовки:
- Диссоциация воды
- Водородный показатель
- Механизм действия буферных систем
- РН буферных систем
- Влияние изменения объема буферных систем на рН.
- Кислотно-щелочное равновесие крови
- Роль внутренних органов в поддержании кислотно-щелочного резерва.
- Изменение кислотно-щелочного равновесия при различных заболеваниях.
- Задачи и задания для самостоятельной работы
- Экспериментальная часть
- Работа №3. Определение буферной ёмкости.
- Электрохимия. Учебно-целевые задачи: Изучив этот раздел учебной программы, студент должен знать:
- Значение электрохимических явлений для медицины.
- Электродные процессы и электродвижущие силы.
- Электрод и электродный потенциал.
- Строение двойного электрического слоя на границе раствор-металл
- Уравнение нернста
- Гальванические элементы и их электродвижущие силы
- Концентрационные гальванические элементы.
- Диффузный потенциал.
- Электроды первого рода.
- Водородный электрод.
- Ионоселективные электроды
- Стеклянный электрод
- Электроды второго рода.
- Хлорсеребряный электрод Аg ׀ Ag Cl. KCl
- Сопровождается реакцией растворения или осаждения соли АgСl:
- Окислительно – восстановительные системы (ов) и ов –электроды.
- Уравнение Петерса.
- Классификация обратимых электродов.
- Измерение эдс гальванических элементов.
- Потенциометрия.
- Прямые потенциометрические методы.
- Приложение
- Экспериментальная часть. Лабораторная работа №1. Измерение эдс гальванических элементов.
- Порядок выполнения работы.
- Изменение потенциалов отдельных электродов.
- Потенциалов отдельных электродов.
- Лабораторная работа № 3.
- Лабораторная работа №4. Потенциометрическое измерение окислительно – восстановительных потенциалов. Редокс – системы.
- Кинетика
- Значение для медицины и фармации
- Вопросы для подготовки к занятию
- Введение
- Понятие о скорости химического процесса
- Основной закон химической кинетики
- Кинетические уравнения реакций
- Реакции первого порядка
- Реакции второго порядка
- Сложные реакции
- Гетерогенные реакции
- Температурная зависимость константы скорости реакции.
- Методы расчета энергии активации и предэкспоненциального множителя а.
- Основы молекулярной кинетики
- Теория активных столкновений
- Теория переходного состояния
- Задачи и задания для самостоятельного решения.
- Экспериментальная часть
- Опыт № 1.Зависимость от концентрации.
- Опыт №2. Зависимость от температуры
- Учебно-методическое и информационное обеспечение дисциплины
- По технике безопасности
- И производственной санитарии при работе
- В химических лабораториях
- Медицинских учебных заведений
- Содержание