logo search
му по химии / Денисова конспект лекций

Инструментальные методы анализа

В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой анализа, высокой чувствительностью, возможностью одновременного определения нескольких компонентов, сочетания нескольких методов, автоматизации и использования компьютеров для обработки результатов анализа.

Фотометрия и спектрофотометрия. Метод основан на использовании основного закона светопоглощения. A=elc. Где A-поглощение света, e-молярный коэффициент светопоглощения, l-длина поглощающего слоя в сантиметрах, c-концентрация раствора.

Существуют несколько методов фотометрии:

Атомно-абсорбционная спектроскопия. Чтобы провести анализ с помощью этого метода, необходим спектрометр. Суть анализа состоит в том, чтобы просветить монохромным светом атомизированную пробу, затем разложить свет, прошедший через пробу любым световым диспергатором и детектором зафиксировать поглощение.

Для атомизации пробы применяются различные атомизаторы. В частности: пламя, высоковольтная искра, индуктивно-связанная плазма. Для разложения света тоже используют различные диспергаторы. Это дифракционная решетка, призма, светофильтр.

Методы, основанные на изучении спектров поглощения лучей анализируемыми веществами, получили название абсорбционно-спектральных. При прохождении света через раствор, свет или его компоненты поглощаются или отражаются. По величине поглощения или отражения лучей судят о природе и концентрации вещества.

В соответствие с законом Бугера—Ламберта—Бера зависимость изменения интенсивности потока света, прошедшего через раствор, от концентрации окрашенного вещества в растворе с, выражается уравнением

lg(I0/I) = εlc,

где I0 и I - интенсивность потока света, падающего на раствор и прошедшего через раствор; ε - коэффициент поглощения света, зависящий от природы растворенного вещества (молярный коэффициент поглощения); l- толщина слоя светопоглощающего раствора.

Измерив, изменение интенсивности потока света, можно определить концентрацию анализируемого вещества. Определение ведут с помощью спектрофотометров и фотоколориметров.

В спектрофотометрах используют монохроматическое излучение, в фотоколориметрах - видимый свет. Сравнивают полученные при измерении данные с градуированными графиками, построенными на стандартных растворах.

Оптический метод, основанный на отражении света твердыми частицами, взвешенными в растворе, называется нефелометрическим. Анализ проводится с помощью приборов нефелометров.

Метод атомно-эмиссионной спектроскопии немного отличается от атомно-абсорбционного метода. Если в абсорбционном методе источником света был отдельный источник, то в атомно-эмиссионном методе источником излучения служит сама проба. В методе эмиссионной спектроскопии проба вещества нагревается до очень высоких температур (2000 - 15000°С). Вещество, испаряясь, диссоциирует на атомы или ионы, которые дают излучение. Проходя через спектрограф, излучение разлагается на компоненты в виде спектра цветных линий. Сравнение этого спектра со справочными данными о спектрах элементов позволяет определить вид элемента, а по интенсивности спектральных линий — количество вещества. Метод дает возможности определять микро- и ультрамикроколичества вещества, анализировать несколько элементов, причем за короткое время. Разновидностью эмиссионного анализа является эмиссионная пламенная фотометрия, в которой исследуемый раствор вводят в бесцветное пламя горелки. По изменению цвета пламени судят о виде вещества, а по интенсивности окрашивания пламени - о концентрации вещества. Анализ выполняют с помощью прибора - пламенного фотометра. Метод в основном используется для анализа щелочных, щелочно-земельных металлов и магния.

Методы, основанные на свечении анализируемого вещества под воздействием ультрафиолетовых (фотолюминесценция), рентгеновких (рентгенолюминесценция) и радиоактивных (радиолюминесценция) лучей называются люминесцентными. Некоторые вещества обладают люминесцентными свойствами, другие вещества могут люминесцировать после обработки специальными реактивами. Люминесцентный метод анализа характеризуется очень высокой чувствительностью (до 10-10 - 10-13 г люминесцирующих примесей).

Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.

Хроматографический анализ. Хроматография (от греч. chroma, родительный падеж chromatos - цвет, краска), физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами - неподвижной и подвижной (элюент), протекающей через неподвижную. Метод разработан в 1903 г. М. Цветом, который показал, что при пропускании смеси растительных пигментов через слой бесцветного сорбента индивидуальные вещества располагаются в виде отдельных окрашенных зон. Полученный таким образом послойно окрашенный столбик сорбента Цвет назвал хроматограммой. Впоследствии термин "хроматограмма" стали относить к разным способам фиксации результатов многих видов хроматографии.

Основные виды хроматографии. В зависимости от природы взаимодействия, обусловливающего распределение компонентов между элюентом и неподвижной фазой, различают следующие основные виды хроматографии - адсорбционную, распределительную, ионообменную, эксклюзионную (молекулярно-ситовую) и осадочную. Адсорбционная хроматография основана на различии сорбируемости разделяемых веществ адсорбентом (твёрдое тело с развитой поверхностью); распределительная хроматография - на разной растворимости компонентов смеси в неподвижной фазе (высококипящая жидкость, нанесённая на твёрдый макропористый носитель) и элюенте (следует иметь в виду, что при распределительном механизме разделения на перемещение зон компонентов частичное влияние оказывает и адсорбционное взаимодействие анализируемых компонентов с твёрдым сорбентом); ионообменная хроматография - на различии констант ионообменного равновесия между неподвижной фазой (ионитом) и компонентами разделяемой смеси; эксклюзионная (молекулярно-ситовая) хроматография - на разной проницаемости молекул компонентов в неподвижную фазу (высокопористый неионогенный гель). Эксклюзионная хроматография подразделяется на гель-проникающую (ГПХ), в которой элюент - неводный растворитель, и гель-фильтрацию, где элюент - вода. Осадочная хроматография основана на различной способности разделяемых компонентов выпадать в осадок на твёрдой неподвижной фазе.

В соответствии с агрегатным состоянием элюента различают газовую и жидкостную хроматографию. В зависимости от агрегатного состояния неподвижной фазы газовая хроматография бывает газо-адсорбционной (неподвижная фаза - твёрдый адсорбент) и газожидкостной (неподвижная фаза - жидкость), а жидкостная хроматография - жидкостно-адсорбционной (или твёрдо-жидкостной) и жидкостно-жидкостной. К твёрдо-жидкостной хроматографии относятся тонкослойная и бумажная.

Различают колоночную и плоскостную хроматографию. В колоночной сорбентом заполняют специальные трубки - колонки, а подвижная фаза движется внутри колонки благодаря перепаду давления. Разновидность колоночной хроматографии - капиллярная, когда тонкий слой сорбента наносится на внутренние стенки капиллярной трубки. Плоскостная хроматография подразделяется на тонкослойную и бумажную. В тонкослойной тонкий слой гранулированного сорбента или пористая плёнка наносится на стеклянную или металлическую пластинки; в случае бумажной хроматографии используют специальную хроматографическую бумагу. В плоскостной хроматографии перемещение подвижной фазы происходит благодаря капиллярным силам.

В зависимости от способа перемещения разделяемой смеси вдоль слоя сорбента различают следующие варианты хроматографии: фронтальный, проявительный и вытеснительный. При фронтальном варианте в слой сорбента непрерывно вводится разделяемая смесь, состоящая из газа-носителя и разделяемых компонентов, например 1, 2, 3, 4, которая сама является подвижной фазой. Через некоторое время после начала процесса наименее сорбируемый компонент (например, 1) опережает остальные и выходит в виде зоны чистого вещества раньше всех, а за ним в порядке сорбируемости последовательно располагаются зоны смесей компонентов: 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4. При проявительном варианте через слой сорбента непрерывно проходит поток элюента и периодически в слой сорбента вводится разделяемая смесь веществ. Через определённое время происходит деление исходной смеси на чистые вещества, располагающиеся отдельными зонами на сорбенте, между которыми находятся зоны элюента. При вытеснительном варианте в сорбент вводится разделяемая смесь, а затем поток газа-носителя, содержащего вытеснитель (элюент), при движении которого смесь через некоторый период времени разделится на зоны чистых веществ, между которыми окажутся зоны их смеси. Ряд видов хроматографии осуществляется с помощью приборов, называемых хроматографами, в большинстве из которых реализуется проявительный вариант хроматографии. Хроматографы используют для анализа и для препаративного (в т. ч. промышленного) разделения смесей веществ. При анализе разделённые в колонке хроматографа вещества вместе с элюентом попадают через различные промежутки времени в установленное на выходе из хроматографической колонки детектирующее устройство, регистрирующее их концентрации во времени. Полученную в результате этого выходную кривую называют хроматограммой. Для качественного хроматографического анализа определяют время от момента ввода пробы до выхода каждого компонента из колонки при данной температуре и при использовании определённого элюента. Для количественного анализа определяют высоты или площади хроматографических пиков с учётом коэффициентов чувствительности используемого детектирующего устройства к анализируемым веществам.

Для анализа и разделения веществ, переходящих без разложения в парообразное состояние, наибольшее применение получила газовая хроматография, где в качестве элюента (газа-носителя) используются гелий, азот, аргон и др. газы. Для газо-адсорбционного варианта Х. в качестве сорбента (частицы диаметром 0,1-0,5 мм) используют силикагели, алюмогели, молекулярные сита, пористые полимеры и др. сорбенты.

Хроматография широко применяется в лабораториях и в промышленности для качественного и количественного анализа многокомпонентных систем, контроля производства, особенно в связи с автоматизацией многих процессов, а также для препаративного (в т. ч. промышленного) выделения индивидуальных веществ (например, благородных металлов), разделения редких и рассеянных элементов. Газовая хроматография применяется для газов разделения, определения примесей вредных веществ в воздухе, воде, почве, промышленных продуктах; определения состава продуктов основного органического и нефтехимического синтеза, выхлопных газов, лекарственных препаратов, а также в криминалистике и т.д. Разработаны аппаратура и методики анализа газов в космических кораблях, анализа атмосферы Марса, идентификации органических веществ в лунных породах и т.п. Газовая Х. применяется также для определения физико-химических характеристик индивидуальных соединений: теплоты адсорбции и растворения, энтальпии, энтропии, констант равновесия и комплексообразования; для твёрдых веществ этот метод позволяет измерить удельную поверхность, пористость, каталитическую активность. Жидкостная Х. используется для анализа, разделения и очистки синтетических полимеров, лекарственных препаратов, детергентов, белков, гормонов и др. биологически важных соединений. Использование высокочувствительных детекторов позволяет работать с очень малыми количествами веществ (10-11-10-9 г), что исключительно важно в биологических исследованиях. Тонкослойная и бумажная Х. используются для анализа жиров, углеводов, белков и др. природных веществ и неорганических соединений.

Электрохимические методы. К наиболее применимым электрохимическим методам анализа относятся потенциометрический, полярографический и кондуктометрический.

Потенциометрический метод базируется на измерении электродных потенциалов, которые зависят от активности ионов, а в разбавленных растворах - от концентрации ионов. По значению потенциала можно судить о концентрации ионов. Измерительная ячейка состоит из измерительного (индикаторного) электрода и электрода сравнения, который не чувствителен к определяемому веществу.

Все более широкое применение находят ионселективные электроды, на границах раздела фаз, которых протекают ионообменные реакции. Потенциал ионселективного электрода зависит от активности, а в разбавленных растворах - от концентрации ионов. Наиболее широко известны ионселективные стеклянные электроды для измерения рН. Н

2,3RT

F

2,3RT

F

а границе стекла и раствора возникает скачок потенциала, величина которого зависит от активности ионов водорода. Измерительная ячейка со стеклянным и вспомогательным электродами соединена с прибором рН-метром, предназначенным для измерения рН растворов.

Полярографический метод предложен чешским ученым Я.Гейеровским в 1922 г. В этом методе строят кривые напряжение - ток для ячейки, у которой два, обычно ртутных, электрода. Один электрод капающий, второй электрод неподвижный с большой площадью поверхности. В ячейку заливается анализируемый раствор. При прохождении тока анализируемый ион осаждается на капле ртути и растворяется в этой капле:

Мn+ + nе + Hg = M (Hg)

Напряжение ячейки определяется, прежде всего, потенциалом капающего электрода, на котором возникает значительная концентрационная поляризация, так как он имеет небольшую площадь поверхности и соответственно высокую плотность тока.

Если в растворе присутствует один разряжающийся ион, то полярографическая кривая (полярограмма) имеет одну волну, при наличии нескольких ионов - несколько волн. По значению потенциала полуволны определяется вид ионов, а по величине предельного тока - их концентрация. Таким образом, полярографический метод позволяет определять концентрацию нескольких ионов в растворе.

Кондуктометрия. Электрическая проводимость разбавленных растворов пропорциональна концентра­ции электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.