logo search
шпоры по химии

Вопрос 3.

Ковалентная связь. Механизмы образования ковалентной связи Характеристика ковалентной связи. Электроотрицательность. Теория гибридизации.В органических соединениях этот тип связи является основным. Ковалентная связь возникает между атомами с относительно малыми различиями в электроотрицательностях ( < 2), например, С и Н, С и О, С и N, C и Cl, N и O и т.п., которые образуют химическую связь за счет общей электронной пары: Связь, образованная путем обобществления пары электронов связываемых атомов, называется ковалентной Эта связь может рассматриваться как электростатическое притяжение ядер двух атомов к общей электронной паре. Ковалентная связь, в отличие от ионной, обладает определенной направленностью (от атома к атому), и ее обозначают валентной чертой, символизирующей эту направленность: Cl - Cl, H - CH3. Ионная связь точнее отражается знаками зарядов ионов: Na+Cl-.Для ковалентных соединений характерно молекулярное строение (молекулярные кристаллические решетки), они имеют относительно низкие температуры плавления и кипения. Такие соединения мало полярны, плохо растворимы в воде, их растворы не проводят электрический ток. Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства органических соединений.

Направленность связи обусловливает молекулярное строение органических веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными. Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей. Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные. Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам. Характеристики ковалентной связиВажными количественными характеристиками ковалентной связи являются энергия связи, ее длина и дипольный момент.

Длина вектора равна произведению длины связи l на эффективный заряд q, который приобретают атомы при смещении электронной плотности: = lq. Вектор дипольного момента направлен от положительного заряда к отрицательному. При векторном сложении дипольных моментов всех связей получают дипольный момент молекулы. Чем выше полярность связи, тем больше ее энергия и меньше длина. На характеристики связей влияет их кратность:

Неполярная ковалентная связь Неполярная (симметричная) ковалентная связь - связь между атомами с практически равной электроотрицательностью (0,4 >  = 0) и, следовательно, равномерным распределением электронной плотности между ядрами атомов. Например : HH, FF, ClCl, CC. Дипольный момент таких связей равен 0. Связь СН в предельных углеводородах (например, в СН4) считается практически неполярной, т.к.  = 2.5(С)  2.1(Н) = 0,4. Следует отметить, что в непредельных углеводородах  электроотрицательность углерода выше и связь СН более полярна (особенно, если атом Н связан с углеродом, имеющим тройную связь: Полярная ковалентная связь

Полярная (несимметричная) ковалентная связь - связь между атомами с различной электроотрицательностью (2 >  > 0.5) и несимметричным распределением общей электронной пары. Электронная плотность такой связи смещена в сторону более электроотрицательного атома, что приводит к появлению на нем частичного отрицательного заряда  (дельта минус), а на менее электроотрицательном атоме - частичного положительного заряда  (дельта плюс):C Cl,  C O,  C N,  O H,  C Mg. Направление смещения электронов обозначается также стрелкой: CCl, CО, CN, ОН, CMg. Чем больше различие в электроотрицательности связываемых атомов, тем выше полярность связи и больше ее дипольный момент. Между противоположными по знаку частичными зарядами действуют дополнительные силы притяжения. Поэтому, чем полярнее связь, тем она прочнее. sp3-Гибридизация (тетраэдрическая) Одна s- и три р-орбитали смешиваются, и образуются четыре равноценные по форме и энергии sp3-гибридные орбитали. Для атома углерода и других элементов 2-го периода этот процесс происходит по схеме:2s + 2px + 2py + 2pz = 4 (2sp3) Схема sp3-гибридизации атомных орбиталей. Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28', что соответствует наименьшей энергии отталкивания электронов. Впервые идею о направленности единиц сродства (валентностей) атома углерода по углам тетраэдра независимо друг от друга выдвинули в 1874 г. Вант-Гоф и Ле Бель sp3-Орбитали могут образовывать четыре -связи с другими атомами или заполняться неподеленными парами электронов. В этом случае sp3-гибридные орбитали изображают не электронными облаками, а прямыми линиями или клиньями в зависимости от пространственной ориентации орбитали. Такое схематическое изображение используется при написании стереохимических (пространственных) формул молекул. sp3-Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 4 (Углерод в sp3-гибридном состоянии встречается в простом веществе - алмазе Это состояние характерно для атомов С, N, O и др., соединенных с другими атомами одинарными связями (sp3-атомы выделены красным цветом): СH4, RCH3, NH3, RNH2, H2O, ROH, R2O; а также в анионах типа:    R3C:,    RO   и т.п.