- Для раствора низкомолекулярного вещества;
2 - для золя; 3 - для раствора полимера.
Такая высокая вязкость растворов высокомолекулярных соединений, даже при низкой концентрации, объясняется наличием в системе длинных гибких макромолекул. Вязкость жидкости можно определить как сопротивление жидкости передвижению одного ее слоя относительно другого. Громадные, вытянутые и гибкие макромолекулы увеличивают силу трения между слоями, т.е. увеличивают вязкость.
Для характеристики вязкости очень разбавленных растворов полимеров, в которых макромолекулы не взаимодействуют друг с другом, Штаудингером предложено следующее уравнение:
где – вязкость раствора и растворителя соответственно;
- удельная вязкость раствора;
- константа, имеющая определенное значение для каждого полимергомологического ряда. Константу К определяют, измеряя молекулярную массу наиболее низкомолекулярных членов данного полимергомологического ряда каким-нибудь другим независимым методом, например, криоскопическим;
- молекулярная масса полимера;
- концентрация раствора, выраженная в «основных молях» на литр. «Основной моль» - число граммов полимера, равное молекулярной массе мономера, из которого построена макромолекула.
Согласно уравнению Штаудингера вязкость раствора прямо пропорциональна молекулярной массе растворенного полимера и концентрации раствора. На этой зависимости основан один из методов определения молекулярной массы полимеров.
Вязкость раствора полимера зависит от природы растворителя.
Чем лучше полимер растворяется в данном растворителе, тем более вытянуты макромолекулы и тем больше вязкость раствора.
С увеличением концентрации вязкость растворов полимеров возрастает непропорционально, и течение концентрированных растворов уже не подчиняется законам Ньютона и Пуазейля. Это проявляется в том, что вязкость этих растворов не является постоянной, а уменьшается с увеличением скорости течения растворов.
При увеличении скорости течения разбавленных растворов полимеров гибкие макромолекулы распрямляются и ориентируются по направлению течения. В результате снижается гидродинамическое сопротивление движущейся жидкости и уменьшается вязкость раствора.
В растворах достаточно высокой концентрации появляются ассоциаты макромолекул, также имеющие вытянутую форму. Эти ассоциаты и макромолекулы, взаимодействуя друг с другом, могут образовывать пространственные структуры, затрудняющие течение. При увеличении скорости течения эти структуры разрушаются и вязкость растворов полимеров снижается. Разрушение сравнительно непрочных полимерных структур можно вызвать и чисто механическим путем – встряхиванием, перемешиванием.
Увеличение концентрации полимера в растворе может привести к образованию настолько прочной структуры, что раствор потеряет текучесть, т. е. превратится в студень.
Повышение температуры увеличивает интенсивность молекулярного движения, препятствует образованию ассоциатов и структур и, следовательно, снижает вязкость растворов полимеров.
- Конспект лекций по дисциплине «Коллоидная химия»
- Оглавление
- Предисловие
- Лекция 1. Основные определения коллоидной химии и ее предмета. Основные признаки и классификация дисперсных систем.
- Значение коллоидной химии
- Основные признаки дисперсных систем
- Изменение удельной поверхности при дроблении 1см3 вещества
- Классификация дисперсных систем
- Классификация дисперсных систем по агрегатному состоянию
- Лекция 2. Получение коллоидных систем (кс) и их очистка.
- Методы конденсации.
- Методы диспергирования.
- Метод пептизации.
- Очистка коллоидных растворов.
- Очищаемый раствор, 2 – растворитель (вода),
- Лекция 3. Молекулярно-кинетические и оптические свойства коллоидных систем.
- Броуновское движение.
- Диффузия
- Осмотическое давление коллоидных растворов.
- Седиментация в дисперсных системах.
- Оптические свойства дисперсных систем
- Явление рассеяния света.
- Поглощение (адсорбция) света.
- Лекция 4. Электрокинетические свойства дисперсных систем.
- Теории образования и строения дэс.
- Электрокинетический потенциал.
- Влияние электролитов на электрокинетический потенциал
- Строение мицеллы.
- Электрокинетические явления.
- Коагуляция
- Действие электролитов на коагуляцию
- Совместное действие электролитов при коагуляции
- Теория устойчивости гидрофобных дисперсных систем длфо
- Старение золей
- Защитное действие молекулярных адсорбирующих слоев
- Лекция 6. Поверхностная энергия и поверхностное натяжение.
- Оценка пн жидкостей из родственных характеристик
- Межфазное натяжение на поверхности раздела твердое тело-жидкость. Смачивание.
- Адсорбция. Изотерма адсорбции. Уравнение Гиббса.
- Построение изотермы адсорбции и нахождение величин .
- Лекция 7. Поверхностные явления. Адсорбция
- Теории адсорбции.
- Комплекс
- Полимолекулярная сорбция
- Частные случаи адсорбции. Адсорбция на границе жидкость-газ.
- Адсорбция на границе раствор-газ
- Применение пав
- Адсорбция на границе твердое тело-раствор
- Молекулярная адсорбция из растворов
- Влияние природы среды
- Ионная адсорбция
- Обменная адсорбция
- Адсорбция на границе твердое тело-газ
- Лекция 8. Растворы полимеров как коллоидные системы (молекулярные коллоиды)
- Общая характеристика растворов полимеров
- Набухание полимеров
- Осмотическое давление и вязкость растворов полимеров
- - Для раствора низкомолекулярного вещества;
- Лекция 9. Застудневание растворов и студни полимеров
- Классификация студней
- Условия образования студней
- Механизм процессов гелеобразованияи структура полимерных гелей
- Реология гелей
- Реологические теории.
- Теория Эйринга
- Структурные теории.
- Гидродинамические теории
- Теория Грессли