logo search
Атомно-эмиссионный спектральный анализ

2. Атомизаторы

Основные типы источников атомизации и возбуждения приведены в таблице 1.

Таблица 1

Тип источника атомизации

Т, ?C

Состояние пробы

С min, % масс

Относит. станд.

отклонен

пламя

1500 - 3000

раствор

10-7 - 10-2

0,01 - 0,05

электрическая дуга

3000- 7000

твердая

10-4 - 10-2

01 - 0,2

электрическая искра

10000 -12000

твердая

10-3 - 10 -1

0,05 - 0,10

Индуктивно связанная

плазма

6000 - 10000

раствор

10-8 - 10 -2

0,01 - 0,05

Важнейшей характеристикой любого атомизатора является его температура. От температуры зависит физико-химическое состояние анализируемого вещества и, следовательно, величина аналитического сигнала и метрологические характеристики методики.

Пламя. Пламенный вариант метода основан на том, что определяемое вещество в виде аэрозоля вместе с используемым растворителем попадает в пламя газовой горелки. В пламени с анализируемым веществом протекает целый ряд реакций и появляется излучение, которое характерно только для исследуемого вещества и являющееся в данном случае аналитическим сигналом.

Схемы горелок, применяемых в методе фотометрии пламени, показаны на рис. 1. Ввод анализируемой жидкости в пламя обычно осуществляется путем ее пневматического распыления. Применяют распылители главным образом двух типов: угловые и концентрические, работающие вследствие создаваемого разряжения над отверстием распыляющего капилляра (или вокруг него), второй конец которого погружен в раствор анализируемой пробы. Вытекающая из капилляра жидкость разбрызгивается струей газа, образуя аэрозоль. Качество работы распылителя оценивают по отношению количества жидкости и газа (МЖГ), расходуемых в единицу времени.

Рис. 1. Горелки для атомно-эмиссионной пламенной спектрометрии:

а) и б) обычная горелка Меккера и усовершенствованная горелка: 1 -- корпус горелки; 2 -- поверхность, на которой формируется пламя; 3 -- отверстия для выхода горючих газов; 4 -- подача смеси горючих газов и аэрозоля; 5 -- выступ на корпусе горелки с отверстиями; в) комбинированная горелка с разделением зон испарения -- атомизации и возбуждения спектров: 1 -- основная горелка с выступом и отверстиями в нем; 3 -- вторая дополнительная горелка с однотипным или более высокотемпературным пламенем; 4 -- пламя; 5 -- зона регистрации излучения; 6 -- подача смеси горючих газов в дополнительную горелку; 7 -- подача смеси горючих газов и аэрозоля в основную горелку.

Для образования пламени готовят газовую смесь, состоящую из горючего газа и газа-окислителя. Выбор компонентов той или иной газовой смеси определяется, прежде всего, требуемой температурой пламени.

Таблица 2 содержит информацию о температурах различных племен в атомно-эмиссионном анализе и их основные характеристики.

Таблица 2 Характеристика племен, применяемых в атомно-эмиссионном анализе

Состав смеси

T ?C

Горючий газ

Окислитель

метан CH4

Воздух

1700 -1900

водород H2

Воздух

2000-2100

ацетилен C2H2

Воздух

2100-2400

ацетилен C2H2

N2O

2600-2800

ацетилен C2H2

O2

3050-3150

Существуют определённые аналитические характеристики пламени. Пламя, безусловно, должно быть стабильным, безопасным, и стоимость компонентов для его поддержания должна быть невысока; оно должно иметь относительно высокую температуру и медленную скорость распространения, что повышает эффективность десольватации и получения пара, и в результате приводит к большим сигналам эмиссии, абсорбции или флуоресценции. К тому же, пламя должно обеспечивать восстановительную атмосферу. Многие металлы в пламени имеют тенденцию образовывать устойчивые оксиды. Эти оксиды тугоплавкие, трудно диссоциируют при обычных температурах в пламени. Для повышения степени образования свободных атомов их необходимо восстановить. Восстановление может быть достигнуто почти в любом пламени, если создать скорость потока горючего газа по большей, чем это необходимо стехиометрии горения. Такое пламя называют обогащённым. Обогащенные пламёна, образуемые такими углеводородными горючими, как ацетилен, обеспечивают прекрасную восстановительную атмосферу, обусловленную большим количеством углерод-содержащих радикальных частиц.

Пламя - самый низкотемпературный источник атомизации и возбуждения, используемый в АЭС. Достигаемые в пламени температуры оптимальны для определения лишь наиболее легко атомизируемых и возбудимых элементов - щелочных и щелочно-земельных металлов. Для них метод фотометрии пламени является одним из самых чувствительных - до 10-7 % масс. Для большинства других элементов пределы определения на несколько порядков выше. Важное достоинство пламени - как источника атомизации - высокая стабильность и связанная с ней хорошая воспроизводимость результатов измерений (Sr - 0,01-0,05).

Выбор необходимой температуры пламени зависит от индивидуальных свойств определяемых веществ.

Если, например, необходимо определять легко возбуждающиеся вещества (щелочные металлы), то температура пламени может быть достаточно низкой.

Электрическая дуга. В АЭС используют дуговые разряды постоянного и переменного тока. Между парой электродов (как правило, угольных) пропускают электрический разряд. При этом в углубление одного из электродов помещают пробу в твердом состоянии. Температура дугового разряда составляет 3000 - 7000 ?C. Таких температур достаточно для атомизации и возбуждения большинства элементов, кроме наиболее трудновозбудимых неметаллов - галогенов. Поэтому для большого числа элементов пределы обнаружения в дуговом разряде ниже, чем в пламени, и составляют - 10-4 - 10-2 масс. %. Дуговые атомизаторы в отличие от пламенных, не обладают высокой стабильностью работы, поэтому воспроизводимость результатов не велика и составляет Sr - 0,1-0,2. Поэтому одна из основных областей применения дуговых атомизаторов - качественный анализ.

Электрическая искра. Искровой атомизатор устроен так же, как и дуговой и предназначен в первую очередь для анализа твёрдых образцов на качественном уровне.

Индуктивно связанная плазма (ИСП). Самый современный источник атомизации, обладающий наилучшими аналитическими возможностями и метрологическими характеристиками. Атомизатор с индуктивно связанной плазмой представляет собой горелку с аргоновой плазмой, которая инициируется искровым зарядом и стабилизируется высокочастотной индукционной катушкой. Температура аргоновой плазмы изменяется по высоте горелки и составляет 6000 - 10000 ?C. При столь высоких температурах возбуждается большинство элементов. Чувствительность метода составляет 10-8 - 10-2 масс. % в зависимости от элемента. Воспроизводимость характеристик аргоновой горелки высока, что позволяет в широком концентрационном диапазоне проводить количественный анализ с воспроизводимостью Sr - 0,01-0,05. Основной фактор, сдерживающий применение АЭС ИСП - дороговизна оборудования и расходных материалов, в частности аргона высокой чистоты, потребление которого при проведении анализа составляет 10-30 л/мин.

Рис. 6. Схема горелки для высокочастотного индукционного разряда:

1 -- аналитическая зона; 2 -- зона первичного излучения; 3 -- зона разряда (скин-слой); 4 -- центральный канал (зона предварительного нагрева); 5 -- индуктор; 6 -- защитная трубка, предотвращающая пробой на индуктор (устанавливается только на коротких горелках); 7, 8, 9 -- внешняя, промежуточная, центральная трубки соответственно