11. Эмиссионный и атомно-абсорбционный спектральный анализ загрязнения почв.
Атомно-эмиссионным спектральным анализом называется метод определения химического состава, основанный на изучении атомных спектров вещества, возбуждаемых в горячих источниках света. Спектр — это излучение, разложенное по длинам волн, заключает в себе информацию о качественном и количественном составах анализируемого объекта. Принципиальная схема эмиссионного спектрального анализа сводится к следующему: а) перевод вещества в парообразное состояние; б) возбуждение атомов и ионов; в) разложение испускаемого атомами света в спектр; д) регистрация и расшифровка полученных спектров.
По характерным линиям в спектрах атомов можно идентифицировать элементы, содержащиеся в анализируемом образце (качественный спектральный анализ), а по относительным интенсивностям спектральных линий можно определять концентрации элементов в исследуемом образце (количественный анализ).
Спектральный анализ был разработан в 1859 г. физиком Кирхгофом и химиком Бунзеном. С помощью сконструированного ими прибора, названного спектроскопом, они показали, что каждому виду атомов (элементу) присущ строго определенный, характерный спектр. Они же предложили использовать спектральный метод для качественного анализа проб. Когда ученые обнаружили в спектрах некоторых образцов спектральные линии, которые нельзя было отнести к каким-либо известным элементам, они объяснили наличие этих линий присутствием неизвестных элементов. Так, с помощью нового метода были открыты неизвестные в то время элементы рубидий и цезий. Позднее другие исследователи с помощью спектрального анализа открыли и другие элементы: таллии, индий, галлий, гелий.
Атомно-абсорбционный метод
является одним из важнейших методов определения малых содержаний элементов в различных объектах — металлах, сплавах, рудах, шлаках, в объектах геохимии, сельского хозяйства, медицины, в особо чистых веществах, образцах воды, минералах и др. Широкое применение метода обусловлено тем, что с его помощью можно определять более 80 элементов, чувствительность атомно-абсорбционного метода часто превышает чувствительность атомно-эмиссионной спектроскопии, аппаратура проста, методики экспрессны. Для атомно-абсорбционной спектроскопии характерна высокая избирательность, взаимные влияния элементов при определении не велики. Для проведения анализа вещество необходимо атомизировать или в ацетиленовом пламени, или в графитовой печи, или электроатомизацией т.е. превратить в пар.
Атомно-абсорбционный анализ (А А А) основан на способности свободных атомов, образующихся при испарении исследуемых проб, селективно поглощать излучение определенной для каждого элемента длины волны. Атомы поглощают излучение тех длин волн, которые соответствуют переходу электронов атомов с основного энергетического уровня Е на более высокие возбужденные состояния. Частота излучения, которое поглощается резонансно атомами, соответствует разнице в энергии между основным состоянием и возбужденным. Необходимую для поглощения атомами определенного элемента (лампа) спектральную линию обычно получают от монохроматического источника излучения.
12. Газовая хроматография аэрозолей и промышленных выбросов.
Метод газовой (газоадсорбционной) хроматографии состоит в разделении адсорбционным способом газовой смеси при пропускании ее совместно с потоком газа-носителя через слой пористого адсорбента и последующим поочередном измерении содержания каждого выделившегося компонента электрическим методом.Физико-химические свойства отдельных компонентов, входящих состав пробы, неодинаковы, поэтому существует различие в скоростях их передвижения через разделительную колонку. По мере продвижения пробы вдоль разделительной колонки происходит процесс разделения компонентов на ряд отдельных полос, представляющих собой бинарные смеси каждого из компонентов с газом-носителем, разделенные между собой зонами чистого газа-носителя. Физические свойства газового потока, выходящего из разделительной колонки, фиксируются детектором. Детектор позволяет получить быструю информацию о составе движущихся бинарных смесей, а следовательно, и о составе анализируемой смеси. Выход компонентов фиксируется на хроматограмме в виде пиков, расположенных на основной (нулевой) линии, представляющей собой регистрацию сигнала детектора во время выхода из колонки чистого газа-носителя (рис 2). Хроматограмма является источником качественной и количественной информации об анализируемой смеси. Количественный анализ основан на измерении высот пиков. Зависимость высоты пика от концентрации измеряемого вещества, а также время.Недостатком при использовании газовой хроматографии для определения концентрации оксидов азота в продуктах сгорания является плохая воспроизводимость результатов и отсутствие подходящих детекторов для надежного количественного определения. В настоящее время, ввиду трудоемкости проведения измерений, хроматографы очень редко используются для определения состава продукте сгорания на ТЭС. Чаще хроматографические методы применяются при приготовлении контрольных поверочных газовых смесей (ПГС), используемых для калибровки газоанализаторов пробоотборного типа, и определении содержания ПАУ в лабораторных условиях.
Хроматограф
прибор для разделения смеси веществ методом хроматографии (метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной и подвижной (элюент) )Обычно хроматографы делят на две большие группы — газовые и жидкостные, по типу используемого элюента. В газовых хроматографах элюентом (газом-носителем) выступает газ (как правило, инертный, в основном используются водород, гелий, азот и аргон), в жидкостной хроматографии носителем является жидкость (как правило, органические растворители, вода и водные растворы используются в особых видах хроматографии, например, в гель-фильтрующей). Основным конструктивным элементом хроматографов являются колонки — трубки, заполненные неподвижной фазой, по которым во время выполнения анализа движется элюент, смешанный с исследуемым образцом. Именно в колонке происходит разделение компонентов исследуемой смеси.
- Цели и задачи экологического контроля
- Государственный контроль. Производственный контроль. Общественный контроль.
- 4.Приборы контроля загрязнения воздуха.
- 5.Приборы контроля загрязнения воды (фотометры, колориметры, спектрофотометры)
- 7. Методы и приборы измерения шума и вибрации
- 9. Молекулярной спектроскопии (фотометрия, спектрофотометрия) в анализе загрязнения воды.
- 10. Устройство и работа концентрационного фотоэлектроколориметра (кфк).
- 11. Эмиссионный и атомно-абсорбционный спектральный анализ загрязнения почв.
- 14. Общая структура экологического мониторинга. Виды мониторинга.
- 15. Физико-химические методы экологического контроля.
- 16. Методы дистанционного зондирования Земли
- 18. Диагностический мониторинг