Коллоидные растворы.
Коллоидными растворами называются гетерогенные дисперсные системы, в которых частицы «растворенного» вещества обладают ультрамикроскопической (коллоидной) степенью дробления.
Методы получения:
Частицы коллоидных размеров могут быть получены, кроме того, с помощью ультразвука, путем распыления металлов в вольтовой дуге, конденсацией в особых условиях паров высококипящих веществ, например металлов.
Большое значение имеют механические способы получения коллоидов. В громадных масштабах в промышленности осуществляется диспергирование твердых веществ до «коллоидных» размеров путем раздавливания, истирания и др. В природе этот эффект производят силы выветривания.
Устойчивость:
Под кинетической устойчивостью понимают способность частиц коллоидного раствора находиться во взвешенном состоянии даже при существенном различии в плотностях дисперсионной среды и дисперсной фазы. Кинетическая устойчивость свойственна сильно разбавленным растворам и очень высокодисперсным золям.
Aгрегативная устойчивость — способность системы сохранять свою степень дисперсности. Устойчивость коллоидных растворов связана с наличием одноименного заряда у коллоидных частиц.
63.
Коллоидные растворы в природе и технике.
Организмы растений и животных состоят из растворов и студней высокомолекулярных веществ. Поэтому биохимия и медицина теснейшим образом связаны с коллоидной химией. Заметим также, что многие технологические процессы пищевой промышленности по существу являются коллоидными процессами. В хлебопекарной промышленности при приготовлении теста огромное значение имеют явления набухания, а при выпекании хлеба — явления коагуляции. Приготовление маргарина, соусов и майонезов представляет собою не что иное, как процесс эмульгирования. В молочной промышленности получение простокваши и сыра является процессом коагуляции и синерезиса (явление, обратное набуханию). Наконец, засолка и варка мяса также сводятся к явлениям коагуляции или, точнее, денатурации белков.
Помимо природных высокомолекулярных веществ в настоящее время в технике и быту применяют ряд синтетических высокомолекулярных продуктов. Сюда следует отнести синтетические каучуки и различные синтетические полимеры. Эти продукты, чрезвычайно разнообразные по химическому строению и свойствам, не только являются полноценными заменителями природных высокомолекулярных веществ, но и получают часто совершенно новое применение. Так, их используют для получения разнообразных пластмасс, в виде органического стекла, в качестве ионообменных материалов (ионитов) для очистки воды и выделения индивидуальных веществ из смесей, для изготовления деталей самолетов и автомобилей и даже корпусов малотоннажных судов. Показательно, что производство синтетических высокомолекулярных веществ значительно превысило производство не только традиционных конструктивных материалов, но и таких сравнительно новых материалов, как алюминиевые и магниевые сплавы.
64.
Электродный потенциал металла.
Электродный потенциал, разность электростатических потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение электродный потенциал обусловлено пространственным разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя.
Электрохимический ряд активности (напряжения) металлов показывает их сравнительную активность в реакциях окисления-восстановления.
65.
Гальванический элемент Даниэля-Якоби.
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов. Примером может служить гальванический элемент Даниэля-Якоби. Он состоит из медной пластины, погруженной в раствор CuSO4 и цинковой пластины, погруженной в раствор ZnSO4.
При работе медно-цинкового элемента протекают следующие основные процессы:
1) реакция окисления цинка
Процессы окисления в электрохимии получили название анодных процессов, а электроды, на которых идут процессы окисления, называют анодами;
2) реакция восстановления ионов меди
Процессы восстановления в электрохимии получили название катодных процессов, а электроды, на которых идут процессы восстановления, называют катодами;
3) движение электронов во внешней цепи;
4) движение ионов в растворе.
Суммируя электродные реакции, получаем:
Zn + Cu2+ = Cu + Zn2+
Вследствие этой химической реакции в ГЭ возникает электрический ток, поэтому ее называют токообразующей.
При схематической записи ГЭ границу раздела между проводником 1-го рода (металлом) и проводником 2-го рода (раствором электролита) обозначают одной вертикальной чертой, а границу раздела между проводниками 2-го рода - двумя чертами. Схема элемента Даниэля-Якоби записывается в виде:
(-) A Zn | Zn2+ || Cu2+ | Cu K (+)
- Модели атомов
- Строение
- Двойственная природа электрона
- Принцип Паули
- Правило Гунда
- Многоэлектронные атомы
- Изменение свойств атомов по периодам и группам псэ
- Ковалентная связь. Метод валентных связей
- Свойства ковалентной связи: насыщаемость, направленность и поляризуемость.
- 3) По заряду внутренней сферы.
- Природа химической связи в комплексных соединениях
- Природа водородной связи
- Свойства
- Водородная связь в нуклеиновых кислотах и белках
- Водородная связь в полимерах
- 1) Методы титриметрии:
- Названия полимеров
- Полимеризация и поликонденсация
- Реакции в цепях полимеров
- 50.51.52.53. Основы химической термодинамики. Термохимия
- II закон термодинамики имеет ясный физический смысл только тогда, когда его применяют к любой ограниченной системе.
- 3.2.2. Зависимость скорости реакции от концентрации реагентов
- 3.2.4. Механизмы химических реакций
- Осмотический закон Вант-Гоффа.
- Коллоидные растворы.
- Применение гальванических элементов. Понятие эдс.
- Классификация электродов.
- Электрохимические источники тока.
- Устройство и принцип действия, применение щелочных аккумуляторов.
- 70. Коррозия металлов.
- Типы коррозии.
- Механизмы коррозионных разрушений.
- Виды электрохимической коррозии металлов с водородной и кислородной деполяризацией катода.
- Методы защиты металлов от коррозии.