Реакции в цепях полимеров
Многие полимеры нельзя получить ни полимеризацией, ни поликонденсацией, поскольку или неизвестны исходные мономеры, или мономеры не образуют высокомолекулярных соединения, синтез таких полимеров осуществляют, исходя из высокомолекулярных соединений, макромолекулы которых содержат реакционноспособные функциональные группы. По этим группам полимеры вступают и те же реакции, что и содержащие такие группы низкомолекулярные соединения. Реакции в цепях полимера могут происходить без существенного изменения молекулярной массы полимера (таи называемые полимер-аналогичные превращения), с увеличением молекулярной массы полимера (синтез привитых и блок сополимеров) или с уменьшением молекулярной массы (деструкция макромолекул).
47.
1. Особенности строения и свойств. Полимеры - это высокомолекулярные вещества, молекулы которых состоят из повторяющихся структурных элементов - звеньев, соединенных в цепочки химическими связями, в количестве, достаточном для возникновения специфических свойств. К специфическим свойствам следует отнести следующие способности: способность к значительным механическим обратимым высокоэластическим деформациям; к образованию анизотропных структур; к образованию высоковязких растворов при взаимодействии с растворителем; к резкому изменению свойств при добавлении ничтожных добавок низкомолекулярных веществ. Приведенные физико-химические особенности можно объяснить исходя из представления о строении полимеров. Говоря о строении следует подразумевать элементный состав вещества, порядок связи атомов, природу связей, наличие межмолекулярных взаимодействий. Характерным для полимеров является наличие длинных цепных молекул с резким различием характера связей вдоль цепи и между цепями. Особенно следует отметить, что нет изолированных цепных молекул. Молекула полимера всегда находится во взаимодействии с окружающей средой, могущей иметь как полимерный характер (случайчистого полимера), так и характер обычной жидкости (разбавленные растворы полимеров). Поэтому для характеристики полимера не достаточно указания типа связей вдоль цепи - необходимо еще иметь сведения о природе межмолекулярного взаимодействия. Следует иметь в виду, что характерные свойства полимеров могут быть реализованы только тогда, когда связи вдоль цепи намного прочнее поперечных связей, образующихся вследствие межмолекулярного взаимодействия любого происхождения. Именно в этом и состоит основная особенность строения полимерных тел. Поэтому можно утверждать, что весь комплекс аномальных свойств полимеров определяется наличием линейных цепных молекул с относительно слабым межмолекулярным взаимодействием. Разветвление этих молекул или соединение их в сетку вносит некоторые изменения в комплекс свойств, но не меняет положения дел по существу до тех пор, пока остаются достаточно длинные цепные линейные отрезки. Напротив, утрата цепного строения молекул при образовании из них глобул или густых сеток приводит к полной утрате всего комплекса характерных для полимеров свойств. Следствием вышеуказанного является возникновение гибкости цепной молекулы. Она заключается в её способность изменять форму под влиянием теплового движения звеньев или внешнего поля, в которое помещен полимер. Это свойство связано с внутренним вращением отдельных частей молекулы относительно друг друга. В реальных молекулах полимеров валентные углы имеют вполне определённую величину, а звенья расположены не произвольно, и положение каждого последующего звена оказывается зависимым от положения предыдущего. Полимеры, у которых наблюдаются достаточно интенсивные крутильныеколебания, называются гибкоцепными, а полимеры, у которых повороты одной части цепи относительно другой затруднены - жесткоцепными. Значит, молекулы могут вращаться и изменять своё строение без разрыва химических связей, образуя различные конформации, под которыми понимают различные пространственные формы молекулы, возникающие при изменении относительной ориентации отдельных её частей в результате внутреннего вращения атомов или групп атомов вокруг простых связей, изгиба связей и др. Таким образом: полимеры - химические соединения с высокой мол.массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.
48.
Свойства полимеров. Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов.Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям. Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических. Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородныхцепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи. Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи. Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.
49.
Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых (или разных) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот —нуклеотиды, в полисахаридах — моносахариды.
Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).
Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химические реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократительную функцию, превращая химическую энергию в механическую работу и обеспечивая подвижность организма в целом или его частей. Белки - основной материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов. Оболочки клеток являются липопротеидными мембранами, рибосомы построены из белка и РНК и т.д. Структурная функция белков тесно связана с регуляцией поступления различных веществ в субклеточные органеллы (активный транспорт ионов и др.) и с ферментативным катализом. Белки выполняют и регуляторные функции (репрессоры), «запрещая» или «разрешая» проявление того или иного гена. В высших организмах имеются белки - переносчики тех или иных веществ (например, гемоглобин - переносчик молекулярного кислорода) и иммунные белки, защищающие организм от чужеродных веществ, проникающих в организм (см. Иммунитет). Полисахариды выполняют структурную, резервную и некоторые другие функции. Белки и нуклеиновые кислоты образуются в живых организмах путём матричного ферментативного биосинтеза. Имеются теперь и биохимические системы внеклеточного синтеза Биополимеры с помощью ферментов, выделенных из клеток. Разработаны методы химического синтеза белков и нуклеиновых кислот.
- Модели атомов
- Строение
- Двойственная природа электрона
- Принцип Паули
- Правило Гунда
- Многоэлектронные атомы
- Изменение свойств атомов по периодам и группам псэ
- Ковалентная связь. Метод валентных связей
- Свойства ковалентной связи: насыщаемость, направленность и поляризуемость.
- 3) По заряду внутренней сферы.
- Природа химической связи в комплексных соединениях
- Природа водородной связи
- Свойства
- Водородная связь в нуклеиновых кислотах и белках
- Водородная связь в полимерах
- 1) Методы титриметрии:
- Названия полимеров
- Полимеризация и поликонденсация
- Реакции в цепях полимеров
- 50.51.52.53. Основы химической термодинамики. Термохимия
- II закон термодинамики имеет ясный физический смысл только тогда, когда его применяют к любой ограниченной системе.
- 3.2.2. Зависимость скорости реакции от концентрации реагентов
- 3.2.4. Механизмы химических реакций
- Осмотический закон Вант-Гоффа.
- Коллоидные растворы.
- Применение гальванических элементов. Понятие эдс.
- Классификация электродов.
- Электрохимические источники тока.
- Устройство и принцип действия, применение щелочных аккумуляторов.
- 70. Коррозия металлов.
- Типы коррозии.
- Механизмы коррозионных разрушений.
- Виды электрохимической коррозии металлов с водородной и кислородной деполяризацией катода.
- Методы защиты металлов от коррозии.