2.1 Закон Бугера-Ламберта-Бера
спектральный атомный абсорбционный фотоколориметрический
В основе спектроскопических методов анализа лежат два основных закона. Первый из них - закон Бугера - Ламберта, второй закон - закон Бера. Объединенный закон Бугера-Ламберта-Бера имеет следующую формулировку: поглощение монохроматического света окрашенным раствором прямо пропорционально концентрации поглощающего свет вещества и толщине слоя раствора, через который он проходит.
Закон Бугера - Ламберта - Бера является основным законом светопоглощения и лежит в основе большинства фотометрических методов анализа. Математически он выражается уравнением:
I =Й0·
или ln = fx,
где f - коэффициент поглощения,
x - толщина поглощающего слоя (размер кюветы).
Величину lnназывают оптической плотностью поглощающего вещества и обозначают буквой Е. Тогда закон можно записать так:
Е = ln = fx
Для разбавленных растворов:
fE = kdc,
где d - толщина поглощающего слоя (размер кюветы),
с - концентрация вещества,
k - коэффициент поглощения.
Отношение интенсивности потока монохроматического излучения, прошедшего через испытуемый объект, к интенсивности первоначального потока излучения называется прозрачностью, или пропусканием, раствора и обозначается буквой Т:
Т = -
Это соотношение может быть выражено в процентах. Величина Т, характеризующая пропускание слоя толщиной 1 см, называется коэффициентом пропускания. Оптическая плотность Е и пропускание Т связаны между собой соотношением:
Е = -lg Т.
Е и Т являются основными величинами, характеризующими поглощение раствора данного вещества с определенной его концентрацией при определенной длине волны и толщине поглощающего слоя.
Величина коэффициента поглощения k зависит от способа выражения концентрации вещества в растворе и толщины поглощающего слоя. Если концентрация выражена в молях на литр, а толщина слоя - в сантиметрах, то он называется молярным коэффициентом поглощения, или коэффициентом экстинкции и обозначается символом е и равен оптической плотности раствора с концентрацией 1 моль/л, помещенного в кювету с толщиной слоя 1 см.
E = lg = еdc
Величина молярного коэффициента поглощения зависит:
- от природы растворенного вещества;
- длины волны монохроматического света;
- температуры;
- природы растворителя[7].
Поглощение света веществом характеризуется кривой поглощения (см. рис.2.1), которая строится на основе измерения интенсивностей поглощения света определенных длин волн, рассчитанных по закону Бугера-Ламберта-Бера. Если кривая поглощения построена в координатах е - то положение ее максимума на оси абсцисс (л,нм) характеризует спектральный цвет и является мерой энергии возбуждения, а положение максимума на оси ординат (еmax) - интенсивность окраски и является мерой вероятности электронного перехода.
Рис.2.1 Спектральная кривая поглощения
С уменьшением энергии возбуждения лmax смещается в длинноволновую часть спектра, при этом окраска изменяется от желтой к оранжевой, красной и т. д. Такое изменение цвета называется его углублением или батохромным сдвигом. Увеличение энергии возбуждения, приводящее к смещению лmax в коротковолновую область и изменению окраски в обратной последовательности, называется повышением цвета или гипсохромным сдвигом [14].
Вид спектра поглощения определяется как природой образующих его атомов и молекул, так и агрегатным состоянием вещества. Спектр разреженных атомарных газов - ряд узких дискретных линий, положение которых зависит от энергии основного и возбужденных электронных состояний атомов. Спектры молекулярных газов - полосы, образованные тесно расположенными линиями, соответствующими переходам между колебательным и вращательным энергетическими уровнями молекул. Спектр вещества в конденсированной фазе определяется не только природой составляющих его молекул, но и межмолекулярными взаимодействиями, влияющими на структуру электронных уровней. Обычно такой спектр состоит из ряда широких полос различной интенсивности.
По спектрам поглощения проводят качественный и количественный анализ веществ. Абсорбционную спектроскопию широко применяют для изучения строения вещества. Она особенно эффективна при исследовании процессов в жидких средах. По изменениям положения, интенсивности и формы полос поглощения судят об изменениях состава и строения поглощающих свет частиц без их выделения из растворов.
Для наблюдения за процессами, происходящими в течение короткого промежутка времени (от нескольких секунд до ~ 10-12 с), широко применяют методы кинетической спектроскопии. Они основаны на регистрации (с помощью фотопластинок или фотоэлектрических приемников) спектров поглощения или испускания исследуемой системы после кратковременного воздействия на нее, направленного быстрого смешения с реагентами или возбуждения внешним источником энергии - светом, потоком электронов, электрическим полем и т.п. Спектром сравнения служит спектр "невозбужденной" системы. Методы кинетической спектроскопии используют для изучения механизма реакций (в частности, для установления состава промежуточных продуктов), количественного определения скоростей реакций [11].
Причины несоблюдения закона Бyгера - Ламберта - Бера:
1. закон выведен и справедлив только для монохроматического света, поэтому недостаточная монохроматизация может вызвать отклонение закона и тем в большей степени, чем меньше монохроматизация света.
2. в растворах могут протекать различные процессы, которые изменяют концентрацию поглощающего вещества или его природу: гидролиз, ионизация, гидратация, ассоциация, полимеризация, комплексообразование и др.
3. светопоглощение растворов существенно зависит от рН раствора. При изменении рН раствора могут изменяться:
- степень ионизации слабого электролита;
- форма существования ионов, что приводит к изменению светопоглощения;
- состав образующихся окрашенных комплексных соединений.
Поэтому закон справедлив для сильно разбавленных растворов, и область его применения ограничена [8].
- ВВЕДЕНИЕ
- ГЛАВА 1. СПЕКТРОСКОПИЯ
- 1.1 Природа спектров и структура атомов
- 1.2 Спектрофотометрия
- 1.2.1 Спектральный анализ
- 1.2.2 Явление абсорбции света
- 1.2.3 Принципы атомно-абсорбционного анализа
- ГЛАВА 2. ОСНОВЫ ФОТОКОЛОРИМЕТРИИ
- 2.1 Закон Бугера-Ламберта-Бера
- 2.2 Фотоколориметрический метод анализа
- ЗАКЛЮЧЕНИЕ
- 1.2. Атомно-абсорбционный анализ
- 7.8. Атомно-абсорбционная спектроскопия
- Атомно-абсорбционный анализ (ааа) (атомно-абсорбционная спектрофотометрия, атомная абсорбциометрия).
- Атомно-абсорбционный анализ
- 1.6 Атомно-абсорбционный метод анализа
- 2.1. Общая характеристика атомно-абсорбционного анализа
- 7. Атомно-абсорбционный спектральный анализ.
- Глава 2. Атомно-абсорбционный анализ
- 2.3 Оборудование атомно-абсорбционного анализа