Атомно-абсорбционный спектрохимический анализ

курсовая работа

2.2 Фотоколориметрический метод анализа

Интенсивность окраски растворов можно измерять различными методами. Среди них выделяют субъективные (визуальные) методы колориметрии и объективные, то есть фотоколориметрические.

Визуальными называют такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом. При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, поэтому метод получил название фотоколориметрического.

Фотоколориметрия применяется для измерения поглощения света или пропускания окрашенными растворами. Приборы, используемые для этой цели, называются фотоколориметрами (ФК).

Фотоколориметрические методы измерения интенсивности окраски связаны с использованием фотоэлементов. В отличие от приборов, в которых сравнение окрасок производится визуально, в фотоколориметрах приемником световой энергии является прибор - фотоэлемент. В этом приборе световая энергия преобразуется в электрическую. Фотоэлементы позволяют проводить колориметрические определения не только в видимой, но также в УФ- и ИК-областях спектра. Измерение световых потоков с помощью фотоэлектрических фотометров более точно и не зависит от особенностей глаза наблюдателя. Применение фотоэлементов позволяет автоматизировать определение концентрации веществ в химическом контроле технологических процессов. Вследствие этого фотоэлектрическая колориметрия значительно шире используется в практике заводских лабораторий, чем визуальная [12].

Рис. 2.2

На рисунке 2.2 показан обычный порядок расположения узлов в приборах для измерения пропускания или поглощения растворов.

Основные узлы приборов для измерения поглощения излучения: 1 - источник излучения; 2 - монохроматор; 3 - кюветы для растворов; 4 - преобразователь; 5 - индикатор сигнала [13].

Фотоколориметры в зависимости от числа используемых при измерениях фотоэлементов делятся на две группы: однолучевые (одноплечие) - приборы с одним фотоэлементом и двухлучевые (двуплечие) - с двумя фотоэлементами.

Точность измерений, получаемая на однолучевых ФЭК, невелика. В заводских и научных лабораториях наиболее широкое распространение получили фотоэлектрические установки, снабженные двумя фотоэлементами. В основу конструкции этих приборов положен принцип уравнивания интенсивности двух световых пучков при помощи переменной щелевой диафрагмы, то есть принцип оптической компенсации двух световых потоков путем изменений раскрытия зрачка диафрагмы.

Принципиальная схема прибора представлена на рисунке 2.3.

Свет от лампы накаливания 1 с помощью зеркал 2 разделяется на два параллельных пучка. Эти световые пучки проходят через светофильтры 3, кюветы с растворами 4 попадают на фотоэлементы 6 и 6, которые включены на гальванометр 8 по дифференциальной схеме. Щелевая диафрагма 5 изменяет интенсивность светового потока, падающего на фотоэлемент 6. Фотометрический нейтральный клин 7 служит для ослабления светового потока, падающего на фотоэлемент 6 [14].

Рис. 2.3 Схема двулучевого фотоэлектроколориметра

Для определения концентрации анализируемых веществ в фотоколориметрии применяют:

- метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов;

- метод определения по среднему значению молярного коэффициента светопоглощения;

- метод градуировочного графика;

- метод добавок.

Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов.

Для определения готовят эталонный раствор определяемого вещества известной концентрации, которая приближается к концентрации исследуемого раствора. Определяют оптическую плотность этого раствора при определенной длине волны. Затем определяют оптическую плотность исследуемого раствора при той же длине волны и при той же толщине слоя. Сравнивая значения оптических плотностей исследуемого и эталонного растворов, находят неизвестную концентрацию определяемого вещества.

Метод сравнения применим при однократных анализах и требует обязательного соблюдения основного закона светопоглощения.

Метод градуировочноro графика.

Для определения концентрации вещества этим методом готовят серию из 5-8 стандартных растворов различной концентрации. При выборе интервала концентраций стандартных растворов руководствуются следующими положениями:

· он должен охватывать область возможных измерений концентрации исследуемого раствора;

· оптическая плотность исследуемого раствора должна соответствовать примерно середине градуировочной кривой;

· желательно, чтобы в этом интервале концентраций соблюдался основной закон светопоглощения, то есть график зависимости был прямолинейным;

· величина оптической плотности должна находиться в пределах 0, 14 - 1,3.

Измеряют оптическую плотность стандартных растворов и строят график зависимости Е(С). Определив Ех исследуемого раствора, по градуировочному графику находят Сх (рис. 2.4).

Рис.2.4 Зависимость оптической плотности раствора от концентрации (калибровочная кривая)

Этот метод позволяет определить концентрацию вещества даже в тех случаях, когда основной закон светопоглощения не соблюдается. В таком случае готовят большое количество стандартных растворов, отличающихся по концентрации не более чем на 10%.

Разновидность метода сравнения - метод добавок - основан на сравнении оптической плотности исследуемого раствора и того же раствора с добавкой известно количества определяемого вещества.

Применяют его для устранения мешающего влияния посторонних примесей, определения малых количеств анализируемого вещества в присутствии больших количеств посторонних веществ. Метод требует обязательного соблюдения основного закона светопоглощения [15].

Делись добром ;)