Промышленные способы получения водорода.
1). Физический – извлечение водорода из коксового газа методом глубокого охлаждения фракционно-термическая конденсация).
2). Электрохимический метод – электролиз воды. Чистота получаемого водорода – 99,8%. Недостаток метода – большой расход электроэнергии.
3). Химический метод – конверсия углеводородных газов. В качестве исходного сырья применяются: углеводородный газ –метан или углеводороды бензиновой фракции нефти.
Конверсия метана – это окисление метана при высокой температуре кислородом или кислородосодержащими соединениями: Н2О или СО2.
По используемому окислителю и технологическому оформлению можно выделить следующие варианты процесса получения водорода: каталитическая парокислородная конверсия, высокотемпературная кислородная конверсия, каталитическая пароуглекислотная конверсия.
Окисление метана при получении синтез-газа протекает по следующим основным суммарным реакциям:
СН4 + Н2О СО +3Н2 -Q (1.1.)
СН4 + 0,5О2 = СО + 2Н2 + Q (1.2.)
СН4 + СО2 2СО + 2Н2 -Q (1.3.)
В реальных условиях ведения процесса реакции 1.1. и 1.3. являются обратимыми и эндотермическими, реакция 1.2. – необратимая и экзотермическая.
-
Первая ступень конверсии метана.
СН4 + Н2О СО + 3Н2 - Q (1.1.)
Помимо основной реакции возможно протекание побочной реакции разложения метана при температуре около 9500С:
СН4 = С + 2Н2 (1.4.)
Реакция (1.1.) в газовой фазе идет медленно (Е=62,2 кКал/моль). Для ее ускорения процесс проводят гетерогенно на поверхности твердого никелевого катализатора. Никель напыляет ся на твердый носитель Al2O3 или MgO. Катализатор изготавливается в виде гранул, таблеток или колец и состоит из пористого носителя и активного компонента. Наличие катализатора позволяет не только увеличить скорость основной реакции, но и при соответствующем избытке окислителей исключить протекание побочной реакции.
Срок службы катализаторов конверсии при правильной эксплуатации достигает трех лет и более. Их активность снижается при действии различных каталитических ядов. Никелевые катализаторы наиболее чувствительны к действию сернистых соединений. Отравление происходит вследствие образования на поверхности катализатора сульфидов никеля, совершенно неактивных по отношению к реакции конверсии метана. Отравленный серой катализатор удается почти полностью регенерировать в определенных температурных условиях при подаче в реактор чистого газа. Активность зауглероженного катализатора можно восстановить, обрабатывая его водяным паром. Поэтому перед конвектором метана газ подвергают сероочистке.
Никелевый катализатор работает в широком температурном интервале 600-10000С.
- Влияние температуры
- Контактное окисление оксида серы (IV)
- Производство метилового спирта
- Принцип наилучшего использования энергии
- Производство аммиака.
- Выбор давления.
- Технологическое оформление процесса синтеза аммиака.
- Производство азотной кислоты
- Сырье для производства азотной кислоты.
- Выбор оптимальных условий проведения процесса.
- Катализатор.
- Температура.
- Давление.
- Соотношение исходных компонентов.
- Конструкции контактных аппаратов.
- Производство этанола
- Элементарные стадии в гетерогенном катализе.
- Производство азотной кислоты
- Производство водорода.
- Промышленные способы получения водорода.
- Выбор температуры.
- Выбор давления.
- Вторая стадия конверсии метана.
- Конверсия оксида углерода.
- Очистка конвертированного газа.
- Технологическое оформление конверсии природного газа.
- Аппаратурное оформление процесса.
- Принцип наилучшего использования сырья
- Производство этилового спирта
- Производство серной кислоты из серы
- Получение серной кислоты.
- 1.Получение обжигового газа из серы.
- 2. Контактное окисление оксида серы (IV).