logo search
учеба / химия

Предложения компании «БораПак» в Самаре

41. Катодная защита — это электрохимическая защита от коррозии, основанная на наложении отрицательного потенциала на защищаемую деталь[1][2]. Катодную защиту, как правило, совмещают с нанесением защитных покрытий.

Сдвиг потенциала защищаемого металлического объекта осуществляется с помощью внешнего источника постоянного тока (станции катодной защиты) или же соединением с протекторным анодом, изготовленным из металла, более электроотрицательного относительно объекта. При этом поверхность защищаемого образца (детали конструкции) становится эквипотенциальной и на всех её участках протекает только катодный процесс. Обусловливающий коррозию анодный процесс перенесён на вспомогательные электроды. Отсюда названия — жертвенный аноджертвенный электрод. Если, однако, сдвиг потенциала в отрицательную сторону превысит определённое значение, возможна так называемая перезащита, связанная с выделением водорода, изменением состава приэлектродного слоя и другими явлениями, что может привести к деградации защитного (изоляционного) покрытия и протеканию процесса стресс-коррозии катодно защищаемого объекта.

42. Газовая коррозия, происходит при непосредственном контакте твердого тела с химически активным газом. Характеризуется образованием на поверхности тела пленки продуктов химической реакции между веществами, входящими в состав тела и адсорбируемыми из внешней газовой среды. В дальнейшем эта пленка препятствует непосредственному контакту корродируемого материала с газом. Взаимодействие последних осуществляется посредством твердофазных реакций в тонких приповерхностных слоях пленки продуктов вследствие встречнойдиффузии сквозь нее реагирующих веществ. Особенно интенсивно развивается газовая коррозия при высоких температурах; возникающая при этом пленка продуктов, называемая окалиной, непрерывно утолщается.

Обычно окалина состоит из нескольких слоев (фаз), которые образованы соединениями различного химического состава и кристаллического строения. Эти слои последовательно располагаются от внутреннего края окалины к внешнему по мере убывания в составе продукта элементов, поступающих из твердого тела. В каждом слое устанавливается градиент концентраций реагирующих веществ, поддерживающий их диффузию, а в тонких приграничных зонах между слоями осуществляются промежуточные твердофазные реакции, в результате которых изменяется кристаллическая решетка фаз. Наличие градиента концентраций означает отклонение состава каждой фазы от стехиометрического АmВn и существование в кристаллической решетке двух типов дефектов - вакансий, т.е. узлов, не занятых атомами (или ионами) элемента, содержащегося в недостатке, и междоузельных атомов (или ионов) элемента, содержащегося в избытке. Кристаллическая решетка фазы может быть представлена формулами  или (  - степень дефектности), которым соответствуют твердые растворы вычитания или внедрения. Соответственно и диффузия происходит по двум механизмам: путем обмена атомов с вакансиями и перемещения атомов по междоузлиям. В большинстве случаев газовая коррозия металлов элементы газовой среды образуют анионную подрешетку с дополнительно заполненными междоузлиями, металл — катионную подрешетку с большим числом вакансий. Типичный пример-образование в окалине железа твердого раствора (вюстита).

Слои окалины имеют поликристаллическое строение, поэтому скорость диффузии реагирующих веществ и, следовательно, кинетика газовая коррозия существенно различны при диффузии сквозь микрокристаллы (зерна) и по межзеренным границам. Диффузия сквозь микрокристаллы происходит в соответствии с законами Фика, и нарастание окалины характеризуется параболической зависимостью от времени. В случае сильно легированных материалов на кинетику газовая коррозия влияет образование фаз сложных оксидов и других соединений, включающих легирующие элементы. Если эти фазы слабо проницаемы для реагирующих веществ и образуют первичные слои окалины, газовая коррозия сильно замедляется. Это используют для создания жаростойких сплавов и защитных покрытий, причем в ходе коррозии тонкий поверхностный слой защищаемого материала оказывается сильно легированным. Сталь легируют Cr, Ni, Al, Si и др. Возможен другой крайний случай, когда в окалине образуется фаза сложного оксида с низкой температурой плавления, которая в условиях газовая коррозия оказывается жидкой, что вызывает резкое ускорение процесса (так называемое катастрофическое окисление). Так бывает, например, при попадании на поверхность лопаток турбин летучих или пылевидных продуктов сгорания топлива, содержащего примеси таких элементов, как Li или V.

Диффузия по межзеренным границам протекает ускоренно; в этом случае на кинетику газовая коррозия существенно влияют особенности микроструктуры окалины: размер и форма зерен, их взаимная кристаллографическая ориентация (текстура) и т.п. Существенное значение имеет неравномерность распределения легирующих элементов (обогащение ими приграничных зон зерен). Изменение удельного объема вещества при перестройке кристаллической решетки на границах слоев создает механического напряжения вплоть до возникновения трещин, что резко ускоряет газовую коррозию.

Разновидность газовой коррозии - так называемое внутреннее окисление (и аналогичное ему внутренней азотирование или др. процессы) некоторых сплавов, содержащих элементы с высоким сродством к веществу, диффундирующему из внешней газовой среды. При этом в приповерхностном слое корродируемого материала (под окалиной) образуются мелкодисперсные частицы оксида такого элемента. Это может быть использовано для изменения механических, в частности прочностных, свойств материалов.

43. Пассивирование – процесс образования тонкой и прочной оксидной пленки на поверхности металла с целью предохранения его от дальнейшего окисления (ржавчины). Для пассивирования применяются р-ры нитрита натрия (NaNO2) или хромового ангидрида (CrO3). Для сталей более предпочтительны нитритные р-ры. Хорошо обезжиренные и протравленные детали погружаются с состав:

Нитрит натрия (NaNO2)

10-15 г/л

Кальцинированная сода (Na2CO3)

3-7 г/л

Температура р-ра 40-60°С, выдержка 10-15 мин., можно добавить какое--либо поверхностно-активное вещество, ОП-7 или любое другое. Для меди и ее сплавов применяются хроматные составы:

Серная к-та

20-25 г/л

Бихромат калия (калиевый хромпик, K2Cr2O7)

80-100 г/л

Температура 45°С, выдержка 5-10 мин.

Вместо бихромата калия, можно использоват бихромат натрия (Na2Cr2O7).

Для серебра можно использовать р-р:

Бихромат калия (калиевый хромпик, K2Cr2O7)

10 г/л

Хромовый ангидрид (CrO3)

1 г/л

Температура 18-25°С, выдержка 1-2 сек. Затем промыть и высушить.