logo search
учеба / химия

PH воды

Для удобства, концентрации [H+] и [HO-] выражают в виде водородного показателя pHи гидроксильного показателя pOH. pH и pOH - это отрицательные десятичные логарифмы концентраций [H+] и [HO-] (правильнее использовать не концентрацию, а активность) соответственно:

pH = -lg[H+]

pOH = -lg[OH-]

Прологарифмируя уравнение [H+] • [HO-] = 10-14 получим: lg[H+] + lg[OH-] = -14 lg[H+] - lg[OH-] = 14 pH + pOH = 14

Получившаяся сумма pH и pOH, также как и произведение, которое логарифмировали, является постоянной и равна 14, так если pH=3 то pOH=11 (pH и pOH могут быть и отрицательными, и если pH=-1 тогда pOH=15).

В зависимости от pH растворы делят на нейтральные, кислые и щелочные. При pH=7раствор нейтральный, при pH<7 - кислый, при pH>7 - щелочной.

От pH раствора очень сильно зависит протекание многих химических реакций, как на уровне процессов проводящихся в лаборатории и на производстве, так и на уровне реакций в живых организмах, поэтому химикам и биологам с водородным показателем иметь дело приходится очень часто. Все обитатели природных вод и почв адаптированы к определенному водородному показателю, и в случаи его изменения могут погибнуть. Большинство живых организмов могут существовать лишь в средах, близких к нейтральным. Отчасти это связано с тем, что под действием ионов H+ и OH-многие белки, содержащие кислотные или основные группы, изменяют свою конфигурацию и заряд. А в сильнокислой и сильнощелочной средах рвётся пептидная связь, которая соединяет отдельные аминокислотные остатки в длинные белковые цепи. Из-за этого ультраосновные (сильнощелочные) растворы вызывают щелочные ожоги кожи и разрушают шёлк и шерсть, состоящие из белка. Все живые организмы вынуждены поддерживать во внутриклеточных жидкостях определённое значение рН. От величины водородного показателя почвенного раствора зависит урожайность различных культурных растений. На кислых почвах с pH=5-5,5 не развиваются проростки ячменя, но хорошо развивается картофель.

30. Способы выражения состава раствора

В химии для количественного выражения состава растворов чаще всего используют массовую долю, молярную концентрацию (молярность) и эквивалентную концентрацию (нормальность). Существуют также моляльная концентрация (моляльность), мольная доля, а также массовая концентрация и объемная концентрация (табл. 1).

Таблица 1. Способы выражения концентрации растворов

Наименование и обозначение

Расчетная формула* и размерность

Массовая доля w

w = mB / mP = = mB / (mB + ms) [доли от 1 или %]

Объемная доля (для газов) vi

vi = VB / V [доли от 1 или %]

Мольная доля µi

µi = nB / (nB + ns) [доли от 1]

Массовая концентрация B

B = mB / Vs [г / л]

Молярная концентрация сB (молярность)

сB = nB / V [моль / л]

Эквивалентная концентрация сeq (нормальность)

сeq = neq / V = (z nB) / V [моль экв. / л]

Моляльная концентрация mi (моляльность)

mi = nB / ms [моль / кг]

* Условные обозначения: mB - масса растворенного вещества; ms - масса растворителя, mр - масса раствора; nB - количество растворенного вещества (моль); neq - эквивалентное количество растворенного вещества (моль эквивалентов); ns - количество растворителя (моль); V - объем раствора; VB - объем растворенного вещества (газообразного); z- эквивалентное число

 

Под концентрацией раствора химики подразумевают, прежде всего, молярность раствора (т.е. количество растворенного вещества nB в моль, отнесенное к общему объему раствора в л). Единица измерения молярной концентрации сB - моль/л.

Если в растворе серной кислоты H2SO4 молярная концентрация равна 1 моль/л, то это обозначается как 1М раствор H2SO4 (одномолярный раствор серной кислоты).

Молярность раствора рассчитывается по данным о его приготовлении или по результатам химического анализа, позволяющим судить о содержании растворенного вещества в некотором объеме раствора.

31. Какое влияние оказывает повышение температуры на гидролиз солей?

Гидролиз солей зависит от природы солей, концентрации раствора и температуры. Соли, образованные слабым основанием и слабой кислотой, гидролизуются полностью. С повышением температуры процесс гидролиза усиливается, так как равновесие ионов Н+ и ОН- в молекуле воды смешается вправо. Иногда гидролиз солей, не происходящий при обычных условиях, при высокой температуре протекает в несколько стадий. Например, гидролиз соли FeCl3, происходит в три стадии, тогда как в обычных условиях гидролиз этой соли осуществляется только на первой стадии:

FeCl3 + НОН  НCl + Fe(OH)Cl2.

Однако при кипячении раствора осуществляется и вторая стадия гидролиза:

Fe(OH)Cl2 + Н2О  НCl + Fe(OH)2Cl.

Если нагревание продолжить, происходит и третья стадия этого процесса:

Fe(OH)2Cl + Н2О  HCl + Fe(OH)3↓.

Степень гидролиза повышается при разбавлении растворов. Это можно наблюдать на примере гидролиза соли SbCl3:

SbCl3 + 2Н2О  Sb(OH)2Cl + 2HCl.

Если раствор соли разбавить водой, равновесие реакции сместится вправо и в осадок выпадет Sb(OH)2Cl (или антимонил хлорид— SbOCl).

Таким образом, для ослабления процесса гидролиза в растворах необходимо сохранять низкую температуру и высокую концентрацию растворов. Кроме того, гидролиз солей можно предупредить путем обеспечения кислотной среды в растворах солей, образованных сильной кислотой и слабым основанием, и щелочной среды в растворах солей, образованных слабой кислотой и сильным основанием.