Особенности молекул, содержащих σ-связи
Для σ-связей характерно такое расположение перекрывающихся электронных облаков, при котором ось облака совпадает с линией, соединяющей центры атомов. Пусть имеется молекула CR4; причем все связи в ней строго ковалентны; введем в эту молекулу заместитель X так, чтобы получилось соединение CR3X. Теперь электронная плотность распределена уже иначе: атом углерода или приобрел, или потерял часть заряда электронного облака — стал или положительным, или отрицательным по сравнению с его состоянием в исходной молекуле. Соответственно и атом заместителя также получил какой-то заряд. Условились обозначать этот эффект термином «индуктивность», а знак индуктивности принимать таким, чтобы он совпадал со знаком заряда, возникшего на атоме заместителя. Индуктивный эффект положителен (+I), если
Индуктивный эффект отрицателен (-I), если
где δ — избыточный заряд на каждом из атомов. Стрелка показывает направления смещения электронной плотности. Индуктивный эффект не ограничивается одной связью; он распространяется по связям, быстро ослабевая. Индуктивный эффект растет с увеличением заряда, создаваемого заместителем. Энергичное притяжение электронов, характерное для металлоидных атомов, выражается в сильном отрицательном индуктивном эффекте (-I-эффект); наоборот, отрицательный ион кислорода склонен отдавать электроны и проявляет положительный (+I-эффект). Ненасыщенные связи С—С характеризуются отрицательным эффектом, т, е. они притягивают «на связь» электроны; радикалы метил- и н-алкилы обнаруживают положительный эффект. Индуктивные эффекты вызывают смещение плотности σ-электронов и позволяют в общих чертах предвидеть, где именно в данной молекуле можно ожидать сосредоточивание отрицательных, а где положительных зарядов. Электронный «остов» молекулы не абсолютно жесткий, и, хотя σ-связи под влиянием различных соседних групп более или менее поляризованы, приближение к данной связи какого-либо постороннего иона или действие внешнего поля могут усилить или ослабить поляризацию. Этот дополнительный эффект называют динамическим эффектом; он, в частности, проявляется в особенно легкой деформируемости связей углерод — иод по сравнению с деформируемостью связей углерод — фтор или хлор.
. Сравнительная характеристика ММО и МВС
Оба квантовомеханических подхода к описанию химической связи √ ММО и МВС √ приближенны, ММО придает преувеличенное значение делокализации электрона в молекуле и основывается на одноэлектронных волновых функциях √ молекулярных орбиталях. МВС преувеличивает роль локализации электронной плотности и основывается на том, что элементарная связь осуществляется только парой электронов между двумя атомами.
Сравнивая МВС м ММО, следует отметить, что достоинством первого является его наглядность: насыщаемость связи объясняется как максимальная ковалентность, направленность вытекает из направленности атомных и гибридных орбиталей; дипольный момент молекулы складывается из дипольных моментов связей, разности ОЭО атомов, образующих молекулу, и наличия неподеленных электронных пар.
Однако существование некоторых соединений невозможно объяснить с позиций МВС. Это электронодефицитные соединения (B2H6, NO, ) и соединения благородных газов. Их строение легко объясняет ММО. Устойчивость молекулярных ионов и атомов в сравнении с молекулами легко предсказывается с позиции ММО. И, наконец, магнетизм и окраска вещества также легко объясняются ММО.
Количественные расчеты в ММО, несмотря на свою громоздкость, все же гораздо проще, чем в МВС. Поэтому в настоящее время в квантовой химии МВС почти не применяется. В то же время качественно выводы МВС гораздо нагляднее и шире используются экспериментаторами, чем ММО. Основанием для этого служит тот факт, что реально в молекуле вероятность пребывания данного электрона между связанными атомами гораздо больше, чем на других атомах, хотя и там она не равна нулю. В конечном счете, выбор метода определяется объектом исследования и поставленной задачей.
26. Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.
Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.
Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.
Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.
Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.
Электроны тем подвижнее, чем дальше они находятся от ядер.Ковалентная связь это когда два атома делятся электронами и держатся вместе.
[]Образование связи
Простая ковалентная связь образуется из двух неспаренных валентных электронов, на один от каждого атома:
A· + ·В → А : В
В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).
Заполнение электронами атомных (по краям) и молекулярных (в центре) орбиталей в молекуле H2. Вертикальная ось соответствует энергетическому уровню, электроны обозначены стрелками, отражающими их спины.
Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО. Обобществленные электроны располагаются на более низкой по энергии связывающей МО.
]Виды ковалентной связи
Существуют три вида ковалентной химической связи, отличающихся механизмом образования:
1. Простая ковалентная связь. Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.
Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называетсянеполярной ковалентной связью. Такую связь имеют простые вещества, например: О2, N2, Cl2. Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например в молекуле PH3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.
Если атомы различны, то степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различныминеметаллами, то такое соединение называется ковалентной полярной связью.
2. Донорно-акцепторная связь. Для образования этого вида ковалентной связи оба электрона предоставляет один из атомов — донор. Второй из атомов, участвующий в образовании связи, называется акцептором. В образовавшейся молекуле формальный заряд донора увеличивается на единицу, а формальный заряд акцептора уменьшается на единицу.
3. Семиполярная связь.Её можно рассматривать как полярную донорно-акцепторную связь. Этот вид ковалентной связи образуется между атомом, обладающим неподелённой парой электронов (азот, фосфор, сера, галогены и т. п.) и атомом с двумя неспаренными электронами (кислород, сера). Образование семиполярной связи протекает в два этапа:
1. Перенос одного электрона от атома с неподелённой парой электронов к атому с двумя неспаренными электронами. В результате атом с неподелённой парой электронов превращается в катион-радикал (положительно заряженная частица с неспаренным электроном), а атом с двумя неспаренными электронами — в анион-радикал (отрицательно заряженная частица с неспаренным электроном).
2. Обобществление неспаренных электронов (как в случае простой ковалентной связи).
При образовании семиполярной связи атом с неподелённой парой электронов увеличивает свой формальный заряд на единицу, а атом с двумя неспаренными электронами понижает свой формальный заряд на единицу.
]σ-связь и π-связь
Сигма (σ)-, пи ( )-связи — приближенное описание видов ковалентных связей в молекулах различных соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании -связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен, ацетилен и бензол.
В молекуле этилена С2Н4 имеется двойная связь СН2=СН2, его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвертого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют -связью.
В линейной молекуле ацетилена
Н—С≡С—Н (Н : С ::: С : Н)
имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две -связи между этими же атомами углерода. Две -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.
Все шесть атомов углерода циклической молекулы бензола С6H6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвертых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные -связи, а единая -электронная система из шести электронов, общая для всех атомов углерода. Связи между атомами углерода в молекуле бензола совершенно одинаковые.
\]Примеры веществ с ковалентной связью
Простой ковалентной связью соединены атомы в молекулах простых газов (Н2, Cl2 и др.) и соединений (Н2О, NH3, CH4, СО2, HCl и др.). Соединения с донорно-акцепторной связью — аммония NH4+, тетрафторборат анион BF4− и др. Соединения с семиполярной связью — закись азота N2O, O−-PCl3+.
Кристаллы с ковалентной связью диэлектрики или полупроводники. Типичными примерами атомных кристаллов (атомы в которых соединены между собой ковалентными (атомными) связями могут служить алмаз, германий и кремний.
Единственным известным человеку веществом с примером ковалентной связи между металлом и углеродом является цианокобаламин, известный как витамин B12.
27. Донорно-акцепторный механизм (иначе координационный механизм) — способ образования ковалентной химической связи между двумя атомами или группой атомов, осуществляемый за счет неподеленной пары электронов атома-донора и свободной орбитали атома-акцептора.
Термины «донорно-акцепторная связь» или «координационная связь» некорректны, поскольку это не есть вид химической связи, а лишь теоретическая модель, описывающая особенность её образования. Свойства ковалентной химической связи, образованной по донорно-акцепторному механизму, ничем не отличаются от свойств связей, образованных по обменному механизму (например, связи N—H в аммонии (NH4+) или связи O—H в гидроксонии (Н3O+)).
Образование аддукта аммиака итрифторида бора
Донорами обычно выступают атомы азота, кислорода, фосфора, серы и др., имеющие неподелённые электронные пары на валентных орбиталях малого размера. Роль акцептора могут выполнять ионизированный атом водорода H+, некоторые p-металлы (напр., алюминий при образовании иона AlH4-) и, в особенности, d-элементы, имеющие незаполненные энергетические ячейки в валентном электронном слое.
Именно с позиций донорно-акцепторного механизма описывается образование локализованных ковалентных связей в молекулах и молекулярных ионах комплексных (координационных) соединений: связь формируется за счёт неподелённой пары электроновлиганда и свободной орбитали атома-комплексообразователя. Донорно-акцепторный механизм также описывает образование промежуточных продуктов (интермедиатов) реакции, например, комплексов с переносом заряда.
Модель донорно-акцепторного механизма существует только в рамках представлений о валентности как о локализации электронной плотности при образовании ковалентных связей (метод валентных схем). В рамках метода молекулярных орбиталей необходимости в подобных представлениях нет.
- 24. Металлическая связь
- [Природа
- [История
- ]Свойства
- ]В воде [Механизм Гротгуса
- ]В нуклеиновых кислотах и белках
- ]В полимерах
- 25. Гибридизация
- Особенности молекул, содержащих σ-связи
- 28. Механизм образования связи
- Валентность атомов. Перекрывание атомных орбиталей
- Гибридизация атомных орбиталей. Геометрическая форма частиц
- Гибридизация атомных орбиталей. Геометрическая форма частиц
- Геометрическая форма молекул и реакционная способность веществ
- ]Определение
- ]Связь с термодинамической устойчивостью системы
- ]Применение в химии []Связь с химическим потенциалом
- ]Историческая справка
- 30. Энергетические эффекты химических реакций
- 31. Превращение энергии при химических реакциях
- ]Определение
- ]Связь с термодинамической устойчивостью системы
- ]Применение в химии ]Связь с химическим потенциалом
- Направленность химических процессов
- [Определение
- ]Связь с термодинамической устойчивостью системы
- ]Применение в химии ]Связь с химическим потенциалом
- ]Энергия Гиббса и направление протекания реакции
- ]Историческая справка
- 35. []Скорость химической реакции
- ]Порядок химической реакции
- ]Реакция нулевого порядка
- []Реакция первого порядка
- ]Реакция второго порядка
- ]Молекулярность реакции
- ]Катализ
- ]Катализ в биохимии
- ]Равновесие
- Способы выражения константы равновесия
- ]Стандартная константа равновесия
- ]Константа равновесия реакций в гетерогенных системах
- ]Константа равновесия и изменение энергии Гиббса
- 39. Гомогенные и гетерогенные реакции
- Закон действующих масс
- ]Закон действующих масс в химической кинетике
- ]Закон действующих масс в химической термодинамике
- ]Методы расчета константы равновесия
- [Править]Энтропийный расчёт изменения энергии Гиббса и константы равновесия реакции