Формулы органических веществ по классам
Алканы - CnH2n+2
Циклоалканы - CnH2n
Алкены - CnH2n
Алкадиены - CnH2n-2
Алкины - CnH2n-2
Предельные одноатомные спирты - R-OH
Простые эфиры - R – O – R’
карбоновые кислоты - R-COOH
амины. Функциональная группа R -NH2
альдегиды (общая формула (R-COH).
Электронно-точечная формула и формула Льюиса наглядно описывают строение ковалентной связи, но громоздки и занимают много места.
формула Льюиса для воды.
Согласно электронной теории строения вещества, атом любого элемента состоит из электроположительного атомного ядра (состоящего из протонов и нейтронов), в котором сосредоточена вся масса атома, и из электронной оболочки электроотрицательных электронов, которые по сравнению с ядром атома почти не имеют массы.
Ввиду того, что атом в целом является электрически нейтральным, то заряд ядра атома будет равен заряду электронной оболочки, т. е. число электронов будет равно числу протонов.
Электроны обладают отрицательным, а протоны — положительным электрическим зарядом.
Атомные орбитали (АО) характеризуются тремя квантовыми числами: главным n, орбитальным l=0,1,2… и магнитным m=0,+-1,+-2. значениям l = 0, 1, 2, 3, 4,... отвечают буквы s, p, d, f,
Молекулярные орбитали (МО) описывают электрон в поле всех ядер молекулы и усредненном поле остальныхэлектронов.
Существуют два главных способа образования ковалентной связи.
1) Электронная пара, образующая связь, может образоваться за счет неспаренных электронов, имеющихся в невозбужденных атомах.
2) Ковалентные связи могут образовываться за счет спаренных электронов, имеющихся на внешнем электронном слое атома. В этом случае второй атом должен иметь на внешнем слое свободную орбиталь. Атом, предоставляющий свою электронную пару для образования ковалентной связи *, называется донором, а атом, предоставляющий пустуюорбиталь, – акцептором. Ковалентная связь, образованная таким способом, называется донорно-акцепторной связью.
- 1. Предмет орг.Химии. Этапы развития. Сырьевые источники. Функциональная группа. Классификация и номенклатура.
- 3. Теория строения Бутлерова. Формулы органических соединений. Формулы Льюиса. Электронная теория строения. Атомная и молекулярная орбитали. Способы образования ковалентной связи.
- Формулы органических веществ по классам
- 4. Взаимное влияние атомов в молекулах органических соединений. Эффекты электронных смещений. Индуктивный и мезомерный эффекты. Эффект гиперконьюгации. Стерический эффект.
- Классификация по направлению реакции
- Нуклеофильные реагенты
- Электрофильные реагенты
- 6. Кислоты и основания в орг.Химии. Сопряженная кислота и сопряженное основание. Кислотно-основные равновесия, примеры. Влияние заместителей в молекуле на кислотность и основность.
- 7. Типы изомерии в органической химии. Структурная, пространственная и оптическая изомерии. Хиральность. Комформация и конфигурация. R,s, z,e – номенкулатуры.
- 8. Строение алканов. Sp3- состояние углерода. Характеристика связей с-с и с-н. Принцип свободного вращения. Конформация. Способы изображения и номенклатуры. Физические свойства алканов.
- 10. Предельные углеводороды (алканы). Химические и физические свойства: реакции радикального замещения. Галогенирования, нитрирование, сульфохлорирование, сульфоокисление. Понятие о цепных реакциях.
- Реакции радикального замещения
- 12. Алкены. Гомологический ряд. Номенклатура. Строение. Sp2 – гибридизация. Изомерия. Физические свойства. Способы получения из алканов. Механизм элиминирования. Правило Зайцева.
- Дегидрирование алканов
- Гидрирование алкинов
- Реакции электрофильного присоединения
- Применение
- Физические свойства
- Гидрогенизированный атом углерода – тот атом, к которому присоединен водород. Наиболее гидрогенизированный – там где больше всего н
- Реакции олигомеризации
- Строение бензола
- Изомерия
- Номенклатура
- Изомерия
- Номенклатура
- 1. Нитрование:
- 2. Галогенирование: