logo
имх для экзамена

17.Химия 17-18 вв.

4. ПЕРИОД КОЛИЧЕСТВЕННЫХ ЗАКОНОВ

Стехиометрия

Атомистическая теория Дальтона

3. ПЕРИОД СТАНОВЛЕНИЯ

кспериментальное естествознание XVII века

В XV-XVI веках в Европе начался период быстрого роста торговли и материального производства. К XVI веку техника в Европе вышла на уровень заметно более высокий, чем в период расцвета Античного мира. При этом изменения в технических приемах опережали их теоретическое осмысление. Технические изобретения XVI века и блестящие успехи мореплавания (разрешившие, кстати, длившийся столетиями финансовый кризис, связанный с нехваткой драгоценных металлов) одновременно ставили перед наукой новые проблемы, которые существовавшая ранее наука разрешить не могла. Дальнейшее усовершенствование техники упиралось в главное противоречие эпохи – противоречие между сравнительно высоким уровнем достигнутых к этому времени технологических знаний и резким отставанием теоретического естествознания.

Развитие философии и естествознания в эпоху Возрождения привело к глубокому кризису аристотелевской картины мира и поставило задачу выработки отражающей реальные свойства действительности физической концепции, а потребности технического прогресса привели к созданию основ научного эксперимента. Быстрому развитию в Европе новых философских систем способствовала также и Реформация, начавшаяся в XVI веке.

Сочетание социально-экономических и технических факторов вызвало сдвиг в общественном сознании, усилило потребность в выработке новой философии, отрицавшей роль авторитета (как религиозных доктрин, так и античных учений) и утверждавшей приоритет научного доказательства. В начале XVII века появились крупные философские произведения, оказавшие существенное влияние на развитие естествознания. Английский философ Френсис Бэкон выдвинул тезис о том, что решающим доводом в научной дискуссии должен являться эксперимент. Вместо принятого с античных времён дедуктивного метода Бэкон предложил новую логику науки – индукцию, основанную на умозаключении от частного к общему (весьма символичными являются названия сочинений Бэкона – "Новый органон" (1620) и "Новая Атлантида", прямо противопоставляемые "Органону" и "Атлантиде" Аристотеля).

Семнадцатый век в философии ознаменовался также возрождением атомистических представлений. Математик (основатель аналитической геометрии) и философ Рене Декарт, известный также как Картезий, утверждал, что все тела состоят из корпускул различной формы и размеров; форма корпускул связана со свойствами вещества. В то же время Декарт считал, что корпускулы делимы и состоят из единой материи. Декарт отрицал представления Демокрита о неделимых атомах, движущихся в пустоте, не решаясь допустить существование пустоты. Корпускулярные идеи, весьма близкие к античным представлениям Эпикура, высказывал и французский философ Пьер Гассенди. Группы атомов, образующие соединения, Гассенди называл молекулами (от лат. moles – кучка). Корпускулярные представления Гассенди завоевали довольно широкое признание среди естествоиспытателей.

Инструментом разрешения противоречия между высоким уровнем технологии и крайне низким уровнем знаний о природе стало в XVII веке новое экспериментальное естествознание.

Огромные успехи в XVII веке были достигнуты в области физики, механики, математики и астрономии. Галилео Галилей не только основал классическую механику, но и ввёл в физику новый образ мышления, в полной мере использующий экспериментальный метод. Немецкий астроном Иоганн Кеплер в 1609 г. привёл в соответствие с астрономическими данными гелиоцентрическую систему, которую предложил в 1543 г. Николай Коперник, и которая в первоначальном виде содержала множество неточностей. Эванджелиста Торричелли, Блез Паскаль и Отто фон Герике провели в середине XVII в. свои знаменитые опыты по изучению вакуума и атмосферного давления. Герике начал также исследования в области электростатики; Христиан Гюйгенс создал волновую теорию света и разработал основные законы оптики. Исаак Ньютон открыл законы классической механики и закон всемирного тяготения. Его капитальный труд "Математические начала натуральной философии" (1687) обобщил не только собственные исследования автора, но и опыт предшественников, результатом чего явилось создание единой механической картины мира, господствовавшей вплоть до рубежа XIX и XX столетий. Все эти и многие другие блестящие открытия ознаменовали собой первую научную революцию, результатом которой стало становление нового естествознания, целиком основанного на экспериментальных данных. Основой естествознания становится принцип количественного измерения в экспериментальных исследованиях. Это находит свое выражение в изобретении разнообразных измерительных приборов – хронометров, термометров, ареометров, барометров, весов и т.д.

Новое естествознание породило и новые организационные формы – были созданы научные общества и академии наук. Ещё в 1560 г. итальянский естествоиспытатель Джиованни Баттиста делла Порта начал проводить в своём доме регулярные собрания, называемые Академией тайн природы. В XVII в. появились официально учреждённые академии с соответствующими органами и статутом: Академия естествоиспытателей (Леопольдина) в Германии (1652), Академия опыта во Флоренции (1657), Королевское общество (1662) в Лондоне, Парижская Академия точных наук (1663).

Одним из следствий произошедшей во второй половине XVII века научной революции явилось создание новой – научной – химии. Создателем научной химии традиционно считается Роберт Бойль.

Кислородная теория горения

Нефлогистонные представления о горении и дыхании зародились даже несколько ранее флогистонной теории. Жан Рей, которому наука обязана постулатом "все тела тяжелы", ещё в 1630 г. высказывал предположение, что увеличение массы металла при обжиге обусловлено присоединением воздуха. В 1665 г. Роберт Гук (1635-1703) в работе "Микрография" также предположил наличие в воздухе особого вещества, подобного веществу, содержащемуся в связанном состоянии в селитре.

ВОСЕМНАДЦАТЫЙ ВЕК Химия как научная дисциплина. С 1670 по 1800 химия получила официальный статус в учебных планах ведущих университетов наряду с натурфилософией и медициной. В 1675 появился учебник Николя Лемери (1645-1715) Курс химии, завоевавший огромную популярность, в свет вышло 13 его французских изданий, а кроме того, он был переведен на латинский и многие другие европейские языки. В 18 в. в Европе создаются научные химические общества и большое количество научных институтов; проводимые в них исследования тесно связаны с социальными и экономическими потребностями общества. Появляются химики-практики, занимающиеся изготовлением приборов и получением веществ для промышленности. Теория флогистона. В сочинениях химиков второй половины 17 в. большое внимание уделялось толкованиям процесса горения. По представлениям древних греков, все, что способно гореть, содержит в себе элемент огня, который высвобождается при соответствующих условиях. В 1669 немецкий химик Иоганн Иоахим Бехер (1635-1682) попытался дать рационалистическое объяснение горючести. Он предположил, что твердые вещества состоят из трех видов "земли", и один из видов, названный им "жирной землей", принял за "принцип горючести". Последователь Бехера немецкий химик и врач Георг Эрнст Шталь (1659-1734) трансформировал концепцию "жирной земли" в обобщенную доктрину флогистона - "начала горючести". Согласно Шталю, флогистон - это некая субстанция, содержащаяся во всех горючих веществах и высвобождающаяся при горении. Шталь утверждал, что ржавление металлов подобно горению дерева. Металлы содержат флогистон, а ржавчина (окалина) уже не содержит флогистона. Это давало приемлемое объяснение и процессу превращения руд в металлы: руда, содержание флогистона в которой незначительно, нагревается на древесном угле, богатом флогистоном, и последний переходит в руду. Уголь же превращается в золу, а руда - в металл, богатый флогистоном. К 1780 теория флогистона была принята химиками почти повсеместно, хотя и не отвечала на очень важный вопрос: почему железо при ржавлении становится тяжелее, хотя флогистон из него улетучивается? Химикам 18 в. это противоречие не казалось столь важным; главное, по их мнению, было объяснить причины изменения внешнего вида веществ. В 18 в. работало много химиков, чья научная деятельность не укладывается в обычные схемы рассмотрения этапов и направлений развития науки, и среди них особое место принадлежит русскому ученому-энциклопедисту, поэту, поборнику просвещения Михаилу Васильевичу Ломоносову (1711-1765). Своими открытиями Ломоносов обогатил почти все области знания, и многие его идеи более чем на сто лет опередили науку того времени. В 1756 Ломоносов провел знаменитые опыты по обжиганию металлов в закрытом сосуде, которые дали неоспоримое доказательство сохранения вещества при химических реакциях и роли воздуха в процессах горения: наблюдаемое увеличение веса при обжигании металлов еще до Лавуазье он объяснял соединением их с воздухом. В противоположность господствовавшим представлениям о теплороде он утверждал, что тепловые явления обусловлены механическим движением материальных частиц. Упругость газов он объяснял движением частиц. Ломоносов разграничивал понятия "корпускула" (молекула) и "элемент" (атом), что получило всеобщее признание лишь в середине 19 в. Ломоносов сформулировал принцип сохранения материи и движения, исключил флогистон из числа химических агентов, заложил основы физической химии, создал при Петербургской АН в 1748 химическую лабораторию, в которой проводились не только научные работы, но и практические занятия студентов. Обширные исследования проводил он в смежных с химией областях знания - физике, геологии и др. Пневматическая химия. Недостатки теории флогистона наиболее ясно выявились в период развития т.н. пневматической химии. Крупнейшим представителем этого направления был Р.Бойль: он не только открыл газовый закон, носящий теперь его имя, но и сконструировал аппараты для собирания воздуха. Химики получили важнейшее средство для выделения, идентификации и изучения различных "воздухов". Важным шагом было изобретение английским химиком Стивеном Хейлзом (1677-1761) "пневматической ванны" в начале 18 в. - прибора для улавливания газов, выделяющихся при нагревании вещества, в сосуд с водой, опущенный вверх дном в ванну с водой. Позже Хейлз и Генри Кавендиш (1731-1810) установили существование неких газов ("воздухов"), отличающихся по своим свойствам от обычного воздуха. В 1766 Кавендиш систематически исследовал газ, образующийся при взаимодействии кислот с некоторыми металлами, позже названный водородом. Большой вклад в изучение газов внес шотландский химик Джозеф Блэк (1728-1799). Он занялся исследованием газов, выделяющихся при действии кислот на щелочи. Блэк установил, что минерал карбонат кальция при нагревании разлагается с выделением газа и образует известь (оксид кальция). Выделившийся газ (углекислый газ - Блэк назвал его "связанным воздухом") можно было вновь соединить с известью и получить карбонат кальция. Среди прочего, это открытие устанавливало неразрывность связей между твердыми и газообразными веществами. Химическая революция. Больших успехов в выделении газов и изучении их свойств достиг Джозеф Пристли (1733-1804) - протестантский священник, увлеченно занимавшийся химией. Близ Лидса (Англия), где он служил, находился пивоваренный завод, откуда можно было получать в больших количествах "связанный воздух" (теперь мы знаем, что это был диоксид углерода) для проведения опытов. Пристли обнаружил, что газы могут растворяться в воде, и попытался собирать их не над водой, а над ртутью. Так он сумел собрать и изучить оксид азота, аммиак, хлороводород, диоксид серы (конечно, это их современные названия). В 1774 Пристли сделал самое важное свое открытие: он выделил газ, в котором вещества горели особенно ярко. Будучи сторонником теории флогистона, он назвал этот газ "дефлогистированным воздухом". Газ, открытый Пристли, казался антиподом "флогистированного воздуха" (азота), выделенного в 1772 английским химиком Даниэлом Резерфордом (1749-1819). В "флогистированном воздухе" мыши умирали, а в "дефлогистированном" были весьма активным. (Следует отметить, что свойства газа, выделенного Пристли, еще в 1771 описал шведский химик Карл Вильгельм Шееле (1742-1786), но его сообщение по небрежности издателя появилось в печати лишь в 1777.) Великий французский химик Антуан Лоран Лавуазье (1743-1794) сразу же оценил значение открытия Пристли. В 1775 он подготовил статью, где утверждал, что воздух не простое вещество, а смесь двух газов, один из них - "дефлогистированный воздух" Пристли, который соединяется с горящими или ржавеющими предметами, переходит из руд в древесный уголь и является необходимым для жизни. Лавуазье назвал его oxygen, кислород, т.е. "порождающий кислоты". Второй удар по теории элементов-стихий был нанесен после того, как выяснилось, что вода - это тоже не простое вещество, а продукт соединения двух газов: кислорода и водорода. Все эти открытия и теории, покончив с таинственными "стихиями", повлекли за собой рационализацию химии. На первый план вышли только те вещества, которые можно взвесить или количество которых можно измерить каким-то иным способом. В течение 80-х годов 18 в. Лавуазье в сотрудничестве с другими французскими химиками - Антуаном Франсуа де Фуркруа (1755-1809), Гитоном де Морво (1737-1816) и Клодом Луи Бертолле (1748-1822) - разработал логическую систему химической номенклатуры; в ней было описано более 30 простых веществ с указанием их свойств. Этот труд, Метод химической номенклатуры, был опубликован в 1787. Переворот в теоретических взглядах химиков, который произошел в конце 18 в. в результате быстрого накопления экспериментального материала в условиях господства теории флогистона (хотя и независимо от нее), обычно называют "химической революцией".