2.2. Палладиевые катализаторы на неорганических носителях
Палладиевые катализаторы на неорганических носителях широко применяют как в промышленности, так и в лабораторном практикуме [7]. Наиболее распространённые среди них являются углеродные матрицы, различные модификации SiO2 и Al2O3. Применяемые в качестве носителей углеродные материалы можно разделить на несколько групп: активированные угли, сажа, графит, мезопористые угли, углеродные нановолокна, углеродные нанотрубки. Приготовление палладиевых катализаторов на выше перечисленных носителях включает в себя следующие основные стадии: 1) подготовка носителя, 2) нанесение металлопрекурсора на поверхность носителя, 3) переведение исходного соединения палладия в активную форму.
Подготовка или активация носителя, необходима из-за того, что углерод обладает определённой химической инертностью. Это затрудняет осаждение на него соединений металлов. Активация носителя предполагает создание на поверхности угля специальных функциональных групп, с целью повышения его реакционной способности. Они оказывают значительное влияние на сорбционное взаимодействие активного компонента с носителем. Наибольший интерес представляют поверхностные кислородные группировки (С=О, СООН, С-ОН) [7].
Осаждение палладиевых прекурсоров осуществляется двумя основными путями. Первый путь – взаимодействие соединений палладия, находящихся в растворе, с поверхностью носителя: это или физическая адсорбция, или химическое связывание с поверхностными функциональными группами. Металл в таких катализаторах присутствует в виде высоко дисперсных частиц. Второй путь представляет собой пропитку носителя раствором прекурсора и приводит к заполнению пор носителя, причём взаимодействие между соединением палладия и углеродом весьма слабое [7].
Широкое применение углерода в качестве носителя связано с двумя важными характеристиками: большой удельной поверхностью и химической инертностью, особенно в среде сильных кислот и оснований. Кроме того, он обладает высокой термостабильностью, что весьма важно для высокотемпературных газофазных процессов.
Углеродные материалы весьма интересны в качестве носителей из-за лёгкой рекуперации металлов платиновой группы путём сжигания отработавших свой срок катализаторов [8].
Также в качестве подложки для наночастиц палладия широко используют различные мезопористые носители, такие как SiO2, Al2O3. Данный вид катализаторов получают либо золь-гель методом [9], либо путём жидкой пропитки .
В первом случае металлопрекурсор добавляют на стадии формирования носителя, который готовят путём гидролиза тетраэтоксисилана (Si(OC2H5)4) в присутствии различных темплатов, образующих поры определённого размера. Ионы металла, таким образом, оказываются сразу внутри матрицы носителя (Схема 1.).
Во втором случае уже готовый носитель пропитывают раствором металлопрекурсора. В обоих случаях образующиеся оксиды или соли переводят в нуль-валентное состояние путём восстановления в токе водорода. Размер частиц при этом контролируется размером пор [9]. Нередко поверхность кремний-оксидных подложек модифицируют различными органическими лигандами с целью лучшего закрепления металла и приданию катализатору особых свойств.
Схема 1. Синтез наночастиц Pd на SiO2 .
В работе [10] стандартные гранулы -Al2O3 покрывали последовательно несколькими слоями полиэтилена, содержащего ионы палладия (Схема 2.). После обработки раствором боргидрида натрия в этих условиях образовались наночастицы Pd диаметром 1-4 нм. Полученный катализатор оказался эффективным в гидрировании непредельных спиртов. Авторы полагают, что селективность такого катализатора в первую очередь определяется избирательной диффузией реагентов и продуктов реакции через слои полимера к каталитическим центрам – наночастицам палладия.
Схема 2. Синтез наночастиц Pd на подложке из Al.
Также в качестве неорганических подложек для создания катализаторов могут применяться менее распространнёные TiO2 и CuO []. Подложка из рутила имеет плоскую поверхность, которая оказывает существенное влияние на форму образующихся частиц. Так, в работе [11] показано, что при осаждении палладия на поверхности кристалла SrTiO3 (001) в определённых пределах можно регулировать форму образующихся нанокристаллов; это достигается путём повышения температуры подложки с последующей реконструкцией её поверхности при охлаждении. При сильном взаимодействии наночастиц металла с поверхностью носителя может происходить изменение не только самих частиц, но и структуры поверхностного слоя носителя, что было показано авторами [12]. Наночастицы палладия на поверхности TiO2-x при нагревании в среде O2 могут «погружаться» в поверхностные слои с одновременной реконструкцией прилегающих TiO2-x слоёв.
- Московский государственный университет имени м.В.Ломоносова
- Синтез гибридного материала на основе наночастиц палладия и ppi-дендримера 3-го поколения
- Содержание
- 2.4. Методы синтеза палладиевых катализаторов на основе дендримеров………..12
- 1. Введение
- 2. Обзор литературы
- 2.1.Наночастицы палладия в катализе
- 2.2. Палладиевые катализаторы на неорганических носителях
- 2.3.Дендримеры.
- 2.3.1.Структура и свойства
- 2.3.2. Основные виды дендримеров
- 2.3.3.Методы синтеза дендримеров
- 2.4. Методы синтеза палладиевых катализаторов на основе дендримеров
- 3. Экспериментальная часть
- 3.1. Исходные вещества
- 3.2.Методы иследования
- 3.3.Синтез гибридного материала meso-dab-ppi-g3-PhGlycd2(1/1)-Pd(1/8)
- 3.3.1. Получение блок (полиэтиленгликоль)-блок(полипропиленгликоль)-блок(полиэтиленгликоль)-сополимера, метилированного по концевым группам
- 3.3.2. Получение мезопористой матрицы meso-dab-ppi-g3-Ph2Glycd2(1/1).
- 3.3.3.Синтез дендример-инкапсулированных наночастиц Pd
- 3.4.Методика проведения каталитических экспериментов
- 4. Обсуждение результатов
- 5. Выводы
- 6. Список литературы