24. Металлическая связь
]Металлическая связь — это одновременное существование положительно заряженных атомов и свободного электронного газа.
]Механизм металлической связи
Во всех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа, движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8).
Рис.1.Расположение ионов в кристалле щелочного металла
Рис.2.Связывающее звенокристаллической решётки щелочного металла
Так, щелочные металлы кристаллизуются в кубической объёмно-центрированной решётке, и каждый положительно заряженный ион щелочного металла имеет в кристалле по восемь ближайших соседей – положительно заряженных ионов щелочного металла (рис.1).Кулоновское отталкивание одноимённо-заряженных частиц (ионов) компенсируется электростатическим притяжением к электронам связывающих звеньев, имеющих форму искажённого сплющенного октаэдра – квадратной бипирамиды, высота которой и рёбра базиса равны величине постоянной трансляционной решётке aw кристалла щелочного металла (рис.2).
Связывающие электроны становятся общими для системы из шести положительных ионов щелочных металлов и удерживают последние от кулоновского отталкивания.
Величина постоянной трансляцонной решётке aw кристалла щелочного металла значительно превышает длину ковалентной связимолекулы щелочного металла, поэтому принято считать, что электроны в металле находятся в свободном состоянии:
Щёлочный металл | Li | Na | K | Rb | Cs |
Постоянная решётка aw,Å [1] | 3,5021 | 4,2820 | 5,247 | 5,69 | 6,084 |
Длина ковалентной связи, Me2, Å [2] | 2,67 | 3,08 | 3,92 | 4,10 | 4,30 |
Математическое построение, связанное со свойствами свободных электронов в металле, обычно отождествляют с «поверхностьюФерми», которую следует рассматривать как геометрическое место, где пребывают электроны, обеспечивая основное свойство металла – проводить электрический ток[3]. Таким образом, электрический ток в металлах – это движение сорванных с орбитального радиуса электронов в поле положительно заряженных ионов, находящихся в узлах кристаллической решётки металла. Выход и вход свободных электронов в связывающее звено кристалла осуществляется через точки «0», равноудалённые от положительных ионов атомов (рис.2).
Свободное движение электронов в металле подтверждено в 1916 году опытом Толмена и Стюарта по резкому торможению быстро вращающейся катушки с проводом – свободные электроны продолжали двигаться по инерции, в результате чего гальванометр регистрировал импульс электрического тока. Свободное движение электронов в металле обусловливает высокую теплопроводность металла и склонность металлов к термоэлектронной эмиссии, происходящей при умеренной температуре.
Колебания ионов кристаллической решётке создаёт сопротивление движению электронов по металлу, сопровождающееся разогревом металла. В настоящее время важнейшим признаком металлов считается отрицательный температурный коэффициент электрической проводимости, то есть понижение проводимости с ростом температуры. С понижением температуры электросопротивление металлов уменьшается, вследствие уменьшения колебаний ионов в кристаллической решётке. В процессе исследования свойств материи при низких температурах Камерлинг-Оннес открывает явление сверхпроводимости. В 1911 году ему удаётся обнаружить уменьшение электросопротивления ртути при температуре кипения жидкого гелия (4,2 К) до нуля. В 1913 году Камерлинг-Оннесу присуждается Нобелевская премия по физике со следующей формулировкой: «За исследование свойств веществ при низких температурах, которые привели к производству жидкого гелия.»
Однако теория сверхпроводимости была создана позднее. В её основе лежит концепция куперовской электронной пары – коррелированного состояния связывающих электронов с противоположными спинамии и импульсами, и, следовательно, сверхпроводимость можно рассматривать как сверхтекучесть электронного газа, состоящего изкуперовских пар электронов, через ионную кристаллическую решётку. В 1972 году авторам теории БКШ – Бардину, Куперу и Шрифферу присуждена Нобелевская премия по физике “За создание теории сверхпроводимости, обычно называемой БКШ-теорией».
]Характерные кристаллические решётки
Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.
В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.
В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni,Ag, Au, Pd, Pt, Rh, γ-Fe, Cu, α-Co и др.
В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.
]Другие свойства
Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей.
Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связаннымковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, Oили F. Водородные связи могут быть межмолекулярными или внутримолекулярными.[1]
- 24. Металлическая связь
- [Природа
- [История
- ]Свойства
- ]В воде [Механизм Гротгуса
- ]В нуклеиновых кислотах и белках
- ]В полимерах
- 25. Гибридизация
- Особенности молекул, содержащих σ-связи
- 28. Механизм образования связи
- Валентность атомов. Перекрывание атомных орбиталей
- Гибридизация атомных орбиталей. Геометрическая форма частиц
- Гибридизация атомных орбиталей. Геометрическая форма частиц
- Геометрическая форма молекул и реакционная способность веществ
- ]Определение
- ]Связь с термодинамической устойчивостью системы
- ]Применение в химии []Связь с химическим потенциалом
- ]Историческая справка
- 30. Энергетические эффекты химических реакций
- 31. Превращение энергии при химических реакциях
- ]Определение
- ]Связь с термодинамической устойчивостью системы
- ]Применение в химии ]Связь с химическим потенциалом
- Направленность химических процессов
- [Определение
- ]Связь с термодинамической устойчивостью системы
- ]Применение в химии ]Связь с химическим потенциалом
- ]Энергия Гиббса и направление протекания реакции
- ]Историческая справка
- 35. []Скорость химической реакции
- ]Порядок химической реакции
- ]Реакция нулевого порядка
- []Реакция первого порядка
- ]Реакция второго порядка
- ]Молекулярность реакции
- ]Катализ
- ]Катализ в биохимии
- ]Равновесие
- Способы выражения константы равновесия
- ]Стандартная константа равновесия
- ]Константа равновесия реакций в гетерогенных системах
- ]Константа равновесия и изменение энергии Гиббса
- 39. Гомогенные и гетерогенные реакции
- Закон действующих масс
- ]Закон действующих масс в химической кинетике
- ]Закон действующих масс в химической термодинамике
- ]Методы расчета константы равновесия
- [Править]Энтропийный расчёт изменения энергии Гиббса и константы равновесия реакции