logo
Полимеры в медицине и биологии

Синтез пептидов на полимерных носителях

Пептиды, играющие большую роль в жизни организмов в качестве гормонов, регуляторов, передатчиков импульсов и др., представляют собой олигомеры (или полимеры) -аминокислот, соединенных друг с другом амидными связями в определенной последовательности. Синтез пептидов сводится к серии циклов последовательных операций — конденсация двух аминокислот, одна из которых защищена по карбоксильной группе, другая — по аминогруппе, деблокирование (как правило, с аминоконца), депротонирование и конденсация со следующей N-защищенной аминокислотой

Z-NH-CHR1-COOH  Z-NH-CHR1-COX 

 Z-NH-CHR1-CO-NH-CHR2-COOY 

 NH2-CHR1-CO-NH-CHR2-COOY и т.д.

где Z — защитная группа аминофункции; Rn — боковой заме-ститель при -углеродном атоме аминокислоты; X — электроно-акцепторная активирующая группа; Y — защитная группа карбоксильной функции.

Синтез чрезвычайно трудоемок из-за необходимости очистки продуктов от избытка реагентов и побочных веществ на каждой стадии. С ростом пептидной цепи сложности значительно возрастают. В результате суммарный выход при синтезе петидов, содержащих 10 аминокислот, оказывается порядка одного процента в расчете на исходные реагенты.

Суть метода, предложенного Меррифилдом, заключается в присоединении первой с С-конца синтезируемого пептида защищенной аминокислоты сложноэфирной связью к нерастворимому полимерному носителю, в качестве которого был использован хлорметилированный сополимер стирола с дивинилбензолом. Таким образом, носитель играет роль полимерной защитной группы. Затем действием кислоты производится деблокирование аминогруппы, ее депротонирование и конденсация со следующей защищенной аминокислотой с использованием, например, дициклогексилкарбодиимида (ДЦГИ) (см. схему на с. 91).

При этом полимерный носитель с ковалентно присоединенной к нему растущей пептидной цепью от начала и до конца синтеза находится в одном реакционном сосуде, меняются только реакционные растворы, которые вместе с избытком реагентов и побочными продуктами реакции отделяются от носителя простым фильтрованием и промывкой. Это позволяет использовать значительные избытки активированных производных кислот и добиваться на каждой стадии практически количественных выходов. Стандартный характер производимых с носителем операций дает возможность автоматизации процесса. Меррифилд сконструировал автоматический синтезатор пептидов и провел на нем синтез белка, состоящего из 184 аминокислотных остатков — рибонуклеазы А, при этом синтезированный белок обладал полной биологической активностью. За это достижение Меррифилд был удостоен Нобелевской премии.

Схема синтеза пептидов по Меррифилду.

Впоследствии принцип синтеза на полимерных носителях был с успехом применен для получения олигонуклеотидов и олигосахаридов с заданной последовательностью нуклеотидов и моносахаридов соответственно.

Вместе с тем, при всех достоинствах твердофазного метода синтеза пептидов со временем обнаружились и его недостатки. По сути такой синтез представляет собой длинную цепь полимер-аналогичных превращений, протекающих в зернах носителя гелевого или микрогетерогенного типа, со всеми вытекающими из этого достоинствами и недостатками.

В первую очередь, недостатки связаны с тем, что выходы на стадии ацилирования не всегда оказываются 100%-ными. В результате накопления ошибок, особенно при синтезе длинных пептидов, целевой продукт может содержать близкие по составу и поэтому очень трудно отделимые “укороченные” пептиды, лишенные в своей структуре одного или нескольких аминокислотных остатков.

Кроме того, рост пептидов может обрываться за счет взаимодействий пептидных цепей как между собой, так и с цепями самого носителя. Получающийся в результате синтеза продукт можно на определенной стадии рассматривать как привитой сополимер со всеми вытекающими из этого последствиями, главным из которых является возможность микрофазового разделения. Сегрегация пептидных цепей в виде твердых микрогетерогенных участков может иметь следствием прекращение их дальнейшего роста из-за невозможности доступа реагентов внутрь таких областей.

Эти недостатки стимулировали поиск новых подходов к использованию полимеров в сложном органическом синтезе. Один из таких подходов — использование носителей, имеющих большее термодинамическое сродство с пептидами. В качестве примеров можно привести носители на основе гидрофильных полимеров — декстрана, полиакриламида и некоторых других.

Другой подход заключается в использовании в качестве носителей растворимых полимеров. Химизм процесса остается тот же, также используются значительные избытки реагентов, однако удаление этих избытков и побочных продуктов реакции производится не фильтрованием, а диализом или многократным переосаждением полимер-пептидного конъюгата после каждой стадии синтеза. Это делает процесс весьма трудоемким и в то же время не устраняет некоторые недостатки твердофазного синтеза, например, возможность взаимодействия пептидных цепей между собой, что ограничивает доступ реагентов к активным центрам даже при синтезе в растворе. Поэтому растворимые носители не нашли широкого практического применения.