logo
Анализ процесса термоконтактного крекинга на примере установки непрерывного коксования в псевдоожиженном слое

1.2 Теоретические основы процесса

Термолиз углеводородов происходит по гомолетическому механизму. При гомолитическом разрыве пара электронов, принадлежащая ранее двум связываемым атомам, поровну распределяется между ними:

Y - X >Y + X

где Y-X -- валентно-насыщенная молекула; Y, X -- два свободных радикала.

СН3°- СН3°- СН3° + СН3°

СН3 -СН2°°Н - СН3-СН2° + °Н

Гомолитический разрыв происходит чаще всего при термических превращениях углеводородов.

Радикалы, являясь химически ненасыщенными частицами, обладают исключительно высокой реакционной способностью и мгновенно вступают в различные реакции.

Радикалы высокой молекулярной массы термически нестабильные и распадаются с образованием низкомолекулярного более устойчивого радикала, в том числе водородного:

Концентрация радикалов в реакционной системе обычно невелика, и вероятность их столкновения между собой ничтожно мала. При термолизе более значительно преобладают взаимодействия между радикалом и молекулами исходного сырья. Поскольку радикал имеет свободный неспаренный электрон, то его реакция с молекулами, все электроны которых спарены, должна в силу принципа неуничтожимости свободной валентности привести к образованию нового вторичного радикала. Если последний не является малоактивным, то он, в свою очередь, вступит в реакцию с новой молекулой сырья и т.д.Так как число радикалов, могущих образоваться при термолизе, велико, на некоторой стадии образуется радикал, принимавший участие в одной из предыдущих стадий, и возникает регулярное чередование двух или более последовательно параллельных элементарных реакций с образованием конечных продуктов. Этот процесс продолжится до тех пор, пока радикал не «погибнет». Реакции такого типа называются цепными.

1.Зарождение цепи (образование свободных радикалов).

При термическом распаде всех алканов, начиная с этана, зарождение цепи происходит в результате разрыва связи С - С. При этом образуются свободные радикалы:

СН3-СН2- СН3 > СН3-СН2°+ СН3°

В случаи алканов с большими числом атомов углерода при не очень высоких температурах крекинга (350-450°С), разрыв углеродной цепи происходит посередине, т.е. по наиболее слабым связям С - С. При более высоких температурах могут рваться и другие С - С связи. Значительно менее вероятен при зарождении цепи разрыв С-Н связей углеводородов, и он возможен только для низших алканов (этан, пропан) при соударении молекул со стекой реактора при высоких температурах. Так как молекулы атома водорода являются внешними атомами в молекулах, то при соударении со стенкой реактора может произойти отрыв атома водорода:

СН3- СН2¦Н > СН3-СН2° +Н°

2. Продолжение цепи (реакции свободных радикалов).

Свободные радикалы обладают высокой реакционной способностью, так как содержат неспаренный электрон. Поэтому они стремятся стабилизироваться и подвергаются различным превращениям. Реакции радикалов с молекулами углеводородов являются основными, приводящими к развитию цепи.

Низшие свободные радикалы (атомарный Н, СН3°, С2Н5°) при столкновении с молекулами алканов отбирают у них атомы водорода.

СН3° + СН3-СН2- СН3 > СН4 + СН3-СН°- СН3

СН3-СН2° + СН3-СН2- СН3 > СН3- СН3 + СН3-СН°- СН3

СН3-СН2° > СН2 = СН2 + Н°

СН3-СН°- СН3 > СН3 = СН - СН3 + Н°

СН3-СН2- СН3 + Н° > СН3-СН°- СН3 + Н2

3. Обрыв цепи. Квадратичный обрыв происходит при взаимодействии двух радикалов. Он характерен для жидкофазных реакций.

СН3°+ СН3° > СН3 - СН3

СН3° + СН3-СН2° > СН3-СН2- СН3

Линейный обрыв цепи чаще встречается при газофазных реакциях. Он происходит при адсорбции свободных радикалов на стенки или другой твёрдой поверхности либо на ингибиторах.

Ингибиторы - вещества, приводящие к гибели активных радикалов по различным механизмам.

СН3 - СН =СН2 + СН3° > СН4 + СН2° - СН = СН2

СН3 СН3

l l

СН3° + СН - СН3 > СН4 + СН2 - С°

l l

СН3 СН3

В случаи олефина стабилизация радикала происходит за счёт эффекта сопряжения двойной связи, а в случаи изопарафина - индукционного эффекта метильных групп.

Термолиз алканов приводит преимущественно к образованию более термостойких низкомолекулярных алкенов и алканов. Из алканов наибольшей термостабильностью обладает метан. Его термическая деструкция термодинамически возможна при температуре выше 560 °С. С заметной скоростью распад метана протекает при температуре выше 1000°С. Высокая термостабильность метана объясняется тем, что в его молекуле отсутствуют связи С-С, энергия разрыва которых меньше, чем для связей С-Н. При высокотемпературном пиролизе метана, кроме водорода (и пироуглерода), образуются этилен, этан, ацетилен и арены. Синтез этих продуктов можно выразить следующей схемой:

Ароматические углеводороды образуются в результате вторичных реакций синтеза из ацетилена и этилена.

Этан менее устойчив, чем метан: его деструкция начинается при температуре = 500°С. При пиролизе этана образуются преимущественно этилен и водород, а также метан и жидкие продукты, богатые аренами и алкенами.

Чередование элементарных реакций (3) и (4) даёт реакцию распад этан по стереохимическому уравнению:

Пропан и бутан термически менее устойчивы, чем этан. Пропан начинает разлагаться при 460 °С, а н-бутан и изобутан - около 435°С. Основные направления пиролиза пропана:

Начиная с бутана, при термолизе алканов преобладающим становится распад по связи С-С. Относительная скорость их термолиза возрастает с увеличением молекулярной массы, что обусловливается уменьшением энергии разрыва С-С-связей по мере приближения к середине цепи и увеличения степени разветвленности молекул.

В процессе пиролиза н-бутана преобладают следующие 2 реакции его распада:

Характерно, что чем выше температура пиролиза бутана, тем больше отодвигается место его распада по С-С-связи к краю молекулы. На это указывает непрерывное возрастание содержания метана в газообразных продуктах реакции вплоть до 900°С. Аналогичные реакции распада характерны для термолиза более высокомолекулярных алканов. Для них при умеренных температурах (400 - 500 °С) наблюдается симметричный разрыв молекулы с образованием олефина и парафина приблизительно одинаковой молекулярной массы.При более высоких температурах в продуктах их термолиза обнаруживаются низшие алканы и высокомолекулярные алкены и арены, вероятно, как результат вторичных реакций.

Алкены характеризуются ввиду наличия двойной связи высокой реакционной способностью в реакциях присоединения, но повышенной, по сравнению с алканами, термостойкостью в отношении реакций распада. Этилен из алкенов наиболее устойчивый. Он всегда содержится в продуктах термолиза нефтяного сырья как первичный и вторичный продукт их превращений. По термической стабильности он занимает промежуточное положение между метаном и этаном. Термический распад этилена заметно начинается при температуре 660 °С. При 400 - 600°С в основном протекает его полимеризация:

В тех же условиях в продуктах пиролиза этилена содержатся высокомолекулярные олефины - продукт сополимеризации бутиленов с этиленом. При температурах 600°С и выше в продуктах термолиза этилена появляются бутадиен и водород в результате дегидрирования бутена-1.

Оптимальная температура образования диенов при пиролизе этилена - 750 °С. При температурах выше 900°С бутадиен в продуктах пиролиза исчезает, вероятно, превращаясь по диеновому синтезу в арены:

Пропилен по термической стабильности уступает этилену и при термолизе образует метан и этилен:

Термолиз бутиленов приводит к образованию метана, пропилена и бутадиена по реакциям:

При этом одновременно начинается интенсивное образование ароматизированных жидких продуктов.

В процессе термолиза высших алкенов при умеренных температурах основной реакцией является реакция полимеризации. При повышении температуры развивается реакция распада по С- С-связи (то есть обратная реакции полимеризации). С малой скоростью происходит также изомеризация алкенов с образованием более стабильных симметричных олефинов.

С увеличением молекулярной массы алкенов возрастает тенденция к разрыву С - С-связи. Для высокомолекулярных алкенов наличие двойной связи практически не влияет на термостойкость алкенов, а по устойчивости они становятся близкими алканам с тем же углеродным атомом.

Нафтены при термолизе более стабильны, чем соответствующие алканы. Наиболее устойчивыми среди нафтенов являются циклопентан и циклогексан. Реакции термолиза незамещенных циклоалканов протекают по нецепному механизму посредством разрыва одной из С-С-связей и образования бирадикала, который далее распадается на стабильные молекулы:

Дегидрирование незамещенных цикланов по цепному механизму не происходит, так как по сравнению с ним распад с образованием бирадикала протекает со значительно большей (на несколько порядков) скоростью. Алкилнафтены при термолизе ведут себя, как алканы: преимущественно распадаются боковые цепи по радикально-цепному механизму.

Бициклические нафтены при 600°С и выше подвергаются дециклизации, деалкилированию и дегидрированию:

Термолиз ароматических углеводородов.

Арены термически устойчивы и поэтому накапливаются в продуктах термических процессов. Ароматические углеводороды с длинными боковыми цепями способны деалкилироваться с образованием преимущественно монометилированных ароматических углеводородов.

Ароматические углеводороды без заместителей (голоядерные) и ароматические углеводороды с низким числом углеродных атомов в цепи практически не подвергаются распаду. В условиях термических процессов они способны конденсироваться с выделением водорода:

В результате образуются высококонденсированные нелетучие и нерастворимые в хинолине вещества, из которых затем получается твердый углеродистый остаток -- кокс или сажа.

Термолиз смеси углеводородов. Цепные реакции, протекающие при термолизе углеводородов всегда взаимозаменяемы. Инициирование в радикально-цепных процессах термолиза является самой энергоемкой и, следовательно, лимитирующей стадией. Дальнейшие превращения радикалов происходят значительно меньшими энергиями активации. Термолиз смеси углеводородов, по сравнению с индивидуальными углеводородами, во многих случаях протекает с большей скоростью вследствие увеличения скорости инициирования активными радикалами, которые не всегда могут образоваться при распаде отдельных классов углеводородов. Отдельные углеводороды, например нафтены, распадающиеся в чистом виде по нецепному пути из-за малой скорости инициирования, в смесях могут превращаться по цепному механизму. В качестве инициаторов цепных реакций могут участвовать и отдельные продукты, образующиеся при термолизе углеводородных смесей.

Основные выводы по химизму газофазного термолиза различных классов углеводородов сводятся к следующему.

Алканы подвергаются реакциям распада на предельные и непредельные углеводороды. Молекулярная масса полученных углеводородов постоянно снижается за счет последовательного крекинга.

Алкены полимеризуются и вступают в реакцию деструктивной полимеризации. В меньшей степени выражена реакция деполимеризации. Возможна также реакция циклизации.

Цикланы и арены претерпевают реакции деалкилирования алкильных цепей, образуя алканы, алкены и цикланы с короткой боковой цепью. Шестичленные цикланы дегидрируются в арены, а последние подвергаются поликонденсации, образуя высокомолекулярные жидкие продукты.

Из вышеизложенного следует, что при термолизе нефтяного сырья протекает множество реакций и получаются продукты чрезвычайно сложного состава. Исследовать ход превращений и конечную судьбу каждого компонента смеси не представляется возможным. Несмотря на это, зная средний состав сырья, можно приблизительно прогнозировать групповой (не индивидуальный) состав конечных продуктов термолиза.

Термические превращения высокомолекулярных компонентов нефти в жидкой фазе

В сырье термического крекинга и коксования (мазуте, гудроне) содержится значительное количество высокомолекулярных соединений нефти: углеводородов, смол и асфальтенов. Так, в состав гудрона могут входить алканы С20--С40, полициклические ароматические и нафтено-ароматические углеводороды, молекулы которых содержат несколько колец и боковые алкильныс цепи, смолы, молекулы которых содержат 3--6 ароматических и нафтеновых колец или гетероциклов с алкильными боковыми цепями, а также асфальтены, молекулы которых могут содержать до 20 и более колец, боковые алкильные цепи и углеродные мостики. Суммарное содержание асфальтенов и смол в гудроне может достигать 50--60 мае. %.

Соединения, входящие в состав нефтяных остатков, обладают невысокой термической стабильностью. Это объясняется тем, что в молекулах этих соединений содержатся слабые С--С-связи в алкильных боковых цепях и углеводородных мостиках

Нефтяные остатки при обычных условиях представляют собой структурированные коллоидные системы, состоящие из дисперсионной среды (углеводороды) и дисперсной

фазы (ассоциированные молекулы смол и асфальтенов).

В процессе термического крекинга и коксования значительная часть сырья находится в жидкой фазе. Расщепление молекул компонентов сырья в жидкой фазе имеет свои особенности. Во-первых, гемолитический разрыв связи углеводорода в жидкой фазе не приводит к быстрому образованию двух разобщенных радикалов, как это происходит в газовой фазе. Это объясняется тем, что расщепляющаяся молекула находится в тесном окружении других молекул, находится как бы в «клетке». Для того чтобы вырваться из этого окружения, образовавшийся радикал должен получить дополнительную энергию (энергия активации диффузии). Величина этой энергии зависит от характера сольватации, т. е. межмолекулярного взаимодействия между радикалом и окружающими молекулами.

Если сольватация является неспецифической (слабое межмолекулярное взаимодействие, обусловленное силами Ван-дер-Ваальса), то энергия активации диффузии невелика. Примером может служить распад молекулы, окруженной неполярными молекулами алканов.

В случае если молекула углеводорода окружена полярными молекулами, например молекулами ароматических углеводородов или смолистых веществ, то энергия активации диффузии будет значительно больше вследствие более сильного межмолекулярного взаимодействия окружающих молекул и сильного их взаимодействия с образовавшимся радикалом. В этом случае радикал будет легче вступать в химическое взаимодействие с окружающими молекулами (присоединение к кратным связям), чем диффундировать из клетки, так как энергия активации химического взаимодействия будет значительно меньше энергии активации диффузии. Поэтому при жидкофазном крекинге углеводородной смеси с высоким содержанием ароматических углеводородов выход газа и легких фракций будет небольшим, так как ароматические углеводороды являются «ловушками» для радикалов.

Вместе с тем ароматические углеводороды, особенно полициклические, будут подвергаться реакции дегидрогенизационной конденсации с образованием асфальтенов и кокса по схеме:

ароматические углеводороды > смолы асфальтены >кокс.

Еще более сложная картина наблюдается в том случае, если происходит распад молекул смол или асфальтенов. Смолы и асфальтены находятся в углеводородных растворах при повышенных концентрациях в ассоциированном состоянии. Надмолекулярная структура асфальтенов представляет собой несколько ассоциированных молекул асфальтенов (пакеты из 2--5 молекул). Смолы также ассоциированы. При термической деструкции асфальтенов и смол происходит разрыв наиболее слабых С--С-связей боковых цепей и углеводородных мостиков. Образовавшиеся радикалы малоподвижны вследствие значительных размеров, к тому же они находятся в составе надмолекулярной структуры, связаны с остальной ее частью силами межмолекулярного взаимодействия. Поэтому они могут только реагировать либо с соседними молекулами внутри ассоциата (взаимодействие с n-электронами ароматических ядер с образованием прочных связей с ароматическими атомами углерода), либо с соседними ассоциатами асфальтенов или смол. В процессе термического распада асфальтенов исчезают слабые связи, появляются прочные. Происходит сшивка молекул асфальтенов в ассоциате и соединение ассоциатов друг с другом. В результате этого образуются более крупные частицы, обладающие худшей растворимостью в углеводородах. Если углеводородная дисперсионная среда, окружающая асфальтены, содержит мало ароматических углеводородов, то продукты конденсации асфальтенов выделяются из раствора в виде капель, и в дальнейшем происходит превращение этих капель в «кокс».

Если углеводородная дисперсионная среда высокоароматизирована и хорошо растворяет асфальтены, то по мере их конденсации не происходит их выделения из раствора, а образуется студень -- трехмерная структурированная система, внутри которой находятся молекулы углеводородной среды (масла). «Кокс» образуется в результате дальнейшей сшивки этой структуры, при этом дисперсионная среда вытесняется.

Таким образом, в конечном итоге высокомолекулярные соединения (ВМС) нефти (полициклические ароматические углеводороды, смолы и асфальтены) в результате термической деструкции превращаются в низкомолекулярные соединения (НМС) и карбоиды («кокс»):

крекинг коксование термолиз нефть