Биодеградируемые полимеры для использования в тканевой инженерии.
Тканевая инженерия это новое, очень быстро развивающееся направление медицины и биологии. Оно связано с разработкой методов выращивания фрагментов тканей или органов, поврежденных в результате болезни или несчастного случая, из собственных клеток пациента с целью дальнейшей имплантации выращенных тканей в организм пациента. Естественно, что проблема иммунной совместимости в этой ситуации перестает быть критической. Этот подход был развит американским хирургом Ваканти в содружестве с химиком Лангером в 80-х годах прошлого века. Первые публикации появились в начале 1990-х гг.
В последнее время клеточная терапия применяется достаточно широко при лечении тяжелых заболеваний, связанных с повреждением тканей внутренних органов, включая инфаркт миокарда. Обычно пациенту вводится суспензия живых клеток соответствующей ткани, и они, самостоятельно находя свое место, способствуют быстрому заживлению поврежденной ткани. Однако такой подход не всегда эффективен, кроме того, он требует использования большого избытка клеточной культуры.
В предложенном Лангером и Ваканти подходе клеточная культура соответствующей ткани высевается на специальную пористую полимерную матрицу – скаффолд (scaffold – строительные леса англ.), изготовленную из биодеструктируемого полимера. После адсорбции на внутренней поверхности пор скаффолда клетки начинают размножаться, постепенно сливаясь в интегрированную ткань. Скаффолд же, находясь в биологической среде, постепенно дезинтегрирует. Спустя некоторое время вместо засеянного клетками пористого полимерного тела формируется фрагмент интегрированной ткани, имеющий такую же форму, как и исходный скаффолд. Причем эта ткань не является чужеродной для организма пациента.
Рисунок. . Кривая 1 – изменение массы интегрированной ткани во времени; кривая 2 – изменение массы полимерного скаффолда во времени.
На рисунке схематически изображен процесс замещения материала скаффолда живой тканью.
В настоящее время на уровень клинической реализации уже вышли работы по инженерии мышечной, костной, соединительной тканей. В стадии исследования находятся работы по созданию кожи, нервных тканей, ткани пародонта, различных тканей глазного яблока, включая создание собственного хрусталика. Естественно, что создание тканей каждого типа имеет свою специфику и требует специальных подходов.
За годы, прошедшие с появления первой публикации, появились тысячи работ, связанных с исследованиями в области тканевой инженерии.
Успешное развитие тканевой инженерии как перспективной медицинской технологии зависит от решения целого комплекса разноплановых проблем, в частности, проблемы создания подходящих полимерных матриц-скаффолдов. Основные проблемы, связанные с деградируемыми полимерами для тканевой инженерии и их взаимодействием с клеточным материалом могут быть сформулированы следующим образом:
-
химическая природа полимера для изготовления скаффолда;
-
типы полимерных скаффолдов, технологии их изготовления;
-
влияние химических, энергетических и морфологических параметров поверхности скаффолда на поведение клеток по отношению к этой поверхности;
-
взаимодействие клеток с полимерной поверхностью скаффолда и принципы модификации полимерной поверхности скаффолда для улучшения ее взаимодействия с клетками.
- Роль высокомолекулярных соединений в существовании жизни на Земле
- Основные представления о химии и физико-химии высокомолекулярных соединений
- Основные свойства высокомолекулярных соединений.
- Деформационно-прочностные свойства.
- Свойства растворов полимеров.
- Общие сведения о биополимерах и полимерах медицинского назначения
- Принципы классификации полимеров и материалов на их основе, используемых в биомедицинских технологиях.
- Классификация полимеров биомедицинского назначения по признаку химической структуры и молекулярных характеристик
- Углеводороды и элементорганические полимеры.
- Полисахариды и их производные.
- Полиэфиры и поликарбонаты
- Полиамиды.
- Полимеры других химических классов.
- Требования к молекулярным характеристикам полимеров медицинского назначения.
- Фазовые и агрегатные состояния полимеров в процессе реализации ими биомедицинских функций.
- Конкретные области использования полимеров биомедицинского назначения.
- Полимеры медико-технического назначения
- Полимеры, предназначенные для введения в организм
- Полимеры как функциональные и вспомогательные материалы для создания лекарственных форм медицинских препаратов.
- Полимеры, используемые в восстановительной хирургии
- Полимеры направленного биологического действия
- Биодеградируемые полимеры для использования в тканевой инженерии.
- Химическая природа полимера для изготовления скаффолда.
- Типы полимерных скаффолдов, технологии их изготовления;
- Взаимодействие клеток с полимерной поверхностью скаффолда.
- Полимерные материалы для функциональных узлов медицинских аппаратов
- Полимерные мембраны
- Общие сведения о мембранной фильтрации
- Способы изготовления и особенности структуры мембранных фильтров
- Основные типы мембранной фильтрации
- Газоразделительные мембраны
- Полимерные сорбенты и носители
- Классификация полимерных носителей
- Синтез полимерных носителей
- Синтез носителей с формированием их микроструктуры в процессе полимеризации
- Введение функциональных групп в полимерную матрицу
- Получение носителей сшивкой готовых макромолекул
- Некоторые примеры использования полимерных носителей в практике
- Синтез пептидов на полимерных носителях
- Полимерные реагенты в синтезе пептидов
- Полимерные реагенты в органическом синтезе
- Другие примеры использования полимерных носителей
- Полимерные материалы для хроматографии и электрофореза.