Компьютерные методы обработки спутниковых данных
Целью обработки данных дистанционного зондирования (ДЗ) является получение снимков или изображений с требуемыми радиометрическими и геометрическими характеристиками. Рассмотрим основные этапы обработки данных. В общем случае обработка данных дистанционного зондирования включает три этапа:
предварительная обработка — прием спутниковых данных, запись их на магнитный носитель, декодировка и корректировка, преобразование данных непосредственно в изображение или космический снимок или в форматы, удобные для последующих видов обработки;
первичная обработка — исправление искажений, вызванных нестабильностью работы космического аппарата и датчика, а также географическая привязка изображения с наложением на него сетки координат, изменение масштаба изображения и представление изображения в необходимой географической проекции (геокодирование);
вторичная (тематическая) обработка — цифровой анализ с применением статистических методов обработки, визуальное дешифрирование и интерпретация в интерактивном или полностью автоматизированном режиме.
Первый и второй этапы обработки в настоящее время могут быть выполнены на борту космического аппарата.
Многозональная съемка ведется многие годы, и исследователи накопили большой объём эмпирических данных. Уже хорошо известно, какие соотношения яркости в различных зонах спектра соответствуют растительности, обнаженной почве, водным поверхностям, урбанизированным территориям и другим распространенным типам ландшафта, существуют библиотеки спектров различных природных образований. Выразив эти соотношения в виде линейных комбинаций различных зон, можно получать так называемые индексы. Так как многие современные системы дистанционного зондирования Земли осуществляют съемку в видимой красной и ближней инфракрасной частях спектра, то распространенным методом является вычисление нормализованного вегетационного индекса (NDVI). Нормализованный вегетационный индекс показывает наличие и состояние растительности по соотношению отраженных энергий в 2 спектральных каналах. Вычисляется по следующей формуле: NDVI=NIR-RED/NIR+RED, где NIR — отражение в ближней инфракрасной области спектра; RED — отражение в красной области спектра. Эта зависимость основана на различных спектральных свойствах хлорофилла в видимом и ближнем ИК диапазонах. Вегетационные индексы можно рассматривать как промежуточный этап при переходе от эмпирических показателей к реальным физическим свойствам растительного покрова. Часто вычисляют универсальные и территориально-привязанные индексы: LAI — индекс листовой поверхности или FPAR — индекс фотосинтетической активной радиации, поглощаемый растительностью и пр. Индекс LAI можно измерить в натурных условиях. В настоящее время в Интернет ежемесячно публикуются растровые изображения LAI (пространственное разрешение 250 м) на весь мир. Эти данные в сочетании с методами классификации мультиспектральных изображений могут значительно повысить достоверность при обработке изображений в экспертных системах, учитывающих множество различной информации.
Как известно, антропогенное воздействие на окружающую среду приводит к возникновению масштабных трудноразрешимых противоречий между интересами развития производства и сохранением природы, поскольку в результате интенсивного использования природных ресурсов происходит разрушение природных систем и интенсивное загрязнение среды. Ещё в Стокгольме на Первой Международной конференции ООН по оценке состояния природной среды в 1972 г. было признано, что экологическое состояние природной среды в промышленных странах стало угрожать не только здоровью населения, но и самому существованию человечества. Решение этих проблем, возникающих в связи с катастрофическим ухудшением окружающей природной среды, занимает сейчас центральное место при выработке стратегии экологически устойчивого социально-экономического развития промышленно развитых стран, в том числе и России. В последние годы в круг фундаментальных исследований проблем экологии территории России широко вовлечены космические методы контроля состояния экосистем.
Появление глобальной компьютерной сети Интернет и разработка передовых информационных технологий открыли новый этап развития космического экологического мониторинга. Особенностью нового этапа является широкое использование телекоммуникационной инфраструктуры, а также гипертекстовых и интерактивных информационных технологий, которые чрезвычайно перспективны в дистанционном мониторинге состояния окружающей среды. Актуальной является также проблема интегрирования национальных информационных ресурсов по окружающей среде, создание региональных баз данных и расширение электронных коллекций по результатам космического экологического мониторинга. Развитие технологий наблюдения из космоса, создание инфраструктур спутникового экологического мониторинга регионов России наряду с разработкой экологической системы контроля в реальном масштабе времени призваны сыграть ключевую роль в обеспечении безопасности окружающей среды и устойчивого развития экономики России.
В связи с этим создаются Центры космического мониторинга (ЦКМ), которые осуществляют оперативный контроль состояния окружающей среды и природных ресурсов (например, Институт солнечно-земной физики СО РАН, г. Иркутск), создают многоуровневые информационные системы пространственно-временного мониторинга состояния окружающей среды, включающие технические и программные средства сбора, обработки, анализа и хранения спутниковой информации.
Во всем мире исследования Земли из космоса приобретают всеобъемлющий характер. Наиболее информативным методом для решения задач дистанционного исследования поверхности Земли из космоса является использование и тематический анализ изображений, полученных приборными комплексами различных частотных диапазонов, установленных на космических аппаратах. Целый ряд спутников, оснащенных приборами дистанционного зондирования (радиолокаторами, скаттерометрами, радиометрами и оптической техникой), выведены на орбиту специально для получения разносторонней геофизической информации, необходимой для оценки состояния окружающей среды и для природо-ресурсных исследований.
- «Методы и приборы контроля окружающей среды и экологический мониторинг»
- 1. Цели, задачи и структура экологического контроля
- 2. Государственный (гэк), производственный (пэк) и общественный экологический контроль (оэк)
- 3. Контроль загрязнения атмосферного воздуха. Периодичность наблюдений.
- 4, 5. Методы и приборы контроля качества вод и состояния почв. Фотометрия
- 6. Методы и приборы измерения шума и вибрации
- 6. Приборы измерения шума, вибрации, теплового излучения и электромагнитных полей
- 7. Выбор места контроля загрязнения и поиск его источника с целью первичной оценки и/или отбора проб
- 8. Молекулярная спектроскопия (фотометрия, спектрофотометрия)
- 9. Устройство и работа концентрационного фотоэлектроколориметра (кфк-2)
- 1. Описание прибора
- 2. Подготовка к работе
- 3. Порядок работы
- 3. 1. Измерение коэффициента пропускания
- 3. 2. Определение концентрации вещества в растворе
- 3. 2. 1. Выбор светофильтра.
- 3. 2. 2. Выбор кюветы.
- 3. 2. 3. Построение градуировочного графика для данного вещества.
- 3. 2. 4. Определение концентрации вещества в растворе.
- 10. Эмиссионный и атомно-абсорбционный спектральный анализ загрязнения почв
- История
- Принцип работы
- Применение
- 11. Газовая хроматография аэрозолей и промышленных выбросов
- 15) Аэрокосмический мониторинг
- 13. Методы экологического мониторинга
- 2 Канал (зеленый):
- Компьютерные методы обработки спутниковых данных
- Наземные
- Физико-химические методы
- Методы биологического мониторинга
- 20) Мониторинг в энергетике