Изомерия аминов
1) углеродного скелета, начиная с С4H9NH2:
СН3-СН2- СН2-СН2 –NH2 н-бутиламин (1-аминобутан)
CH3-CH- СН2-NH2 изо-бутиламин (1-амин-2-метилпропан)
│
СН3
2) положения аминогруппы, начиная с С3H7NH2:
СН3-СН2- СН2-СН2 –NH2 1-аминобутан (н-бутиламин)
CH3-CH- СН2-СH3 2-аминобутан (втор-бутиламин)
│
NН2
3) изомерия между типами аминов – первичный, вторичный, третичный:
ФИЗИЧЕСКИЕ СВОЙСТВА АМИНОВ.
Первичные и вторичные амины образуют слабые межмолекулярные водородные связи:
Это объясняет относительно более высокую температуру кипения аминов по сравнению с алканами с близкой молекулярной массой. Например:
Пропиламин (М=59) t кип = 49оС | Бутан (М=58) t кип = -0,5оС |
Третичные амины не образуют ассоциирующих водородных связей (отсутствует группа N–H). Поэтому их температуры кипения ниже, чем у изомерных первичных и вторичных аминов:
Триэтиламин t кип = 89 °С | н-Гексиламин tкип = 133 °С |
По сравнению со спиртами алифатические амины имеют более низкие температуры кипения, т.к. в спиртах водородная связь более прочная:
Метиламин t кип = -6 °С | Метанол t кип = +64,5 °С |
При обычной температуре только низшие алифатические амины CH3NH2, (CH3)2NH и (CH3)3N – газы (с запахом аммиака), средние гомологи – жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха.
Ароматические амины – бесцветные высококипящие жидкости или твердые вещества.
Амины способны к образованию водородных связей с водой:
Поэтому низшие амины хорошо растворимы в воде.
С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается, т.к. увеличиваются пространственные препятствия образованию водородных связей. Ароматические амины в воде практически не растворяются.
Анилин: С6H5-NH2 – важнейший из ароматических аминов:
Он находит широкое применение в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты).
Анилин - бесцветная маслянистая жидкость с характерным запахом. На воздухе окисляется и приобретает красно-бурую окраску. Ядовит.
ПОЛУЧЕНИЕ АМИНОВ.
1. Первичные амины можно получить восстановлением нитросоединений. а) Гидрирование водородом: R-NO2 + H2 -t R-NH2 + H2O |
б) Восстановление: в щелочной и нейтральной среде получаются амины: R-NO2 + 3(NH4)2S R- NH2 + 3S + 6NH3 +2H2O (реакция Зинина) R-NO2 + 2Al + 2KOH + 4H2O R- NH2 + 2K[Al(OH)4] Восстановлением нитробензола получают анилин. |
в) в кислой среде (железо, олово или цинк в соляной кислоте) получаются соли аминов: R-NO2 + 3Fe + 7HCl [RNH3+]Cl- + 2H2O + 3FeCl2 Амины из раствора выделяют с помощью щелочи: [RNH3+]Cl- +КОН = H2O + КCl + R- NH2 |
2. Алкилирование аммиака и аминов. При взаимодействии аммиака с алкиламинами происходит образование соли первичного амина, из которой действием щелочи можно выделить амин. Этот амин способен взаимодействовать с новой порцией галогеналкама с образованием вторичного амина: СH3Br + NH3 [CH3NH3]Br -(+KOH) CH3-NH2+ KBr + H2O первичный амин CH3-NH2 + C2H5Br [CH3NH2+]Br- -(+KOH) CH3 - NH + KBr + H2O вторичный амин │ │ C2H5 C2H5 Возможно дальнейшее алкилирование до третичного амина. |
3.Восстановление нитриловс образованием первичных аминов: R–CN + 4[H]R–CH2NH2 Этим способом в промышленности получают гексаметилендиамин, который используется в производстве полиамидного волокна найлон.
|
4. Взаимодействие аммиака со спиртами:
R-OH + NH3 -(t,p) R –NH2 + H2O |
ХИМИЧЕСКИЕ СВОЙСТВА АМИНОВ.
Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства.
Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:
Поэтому амины и аммиак обладают свойствами оснований.
1. Основные свойства. Будучи производными аммиака, все амины обладают основными свойствами. Алифатические амины являются более сильными основаниями, чем аммиак, а ароматические - более слабыми. Это объясняется тем, что радикалы СН3-, С2Н5- и др. проявляют положительный индуктивный (+I) эффект и увеличивают электронную плотность на атоме азота: СН3 → NH2 Это приводит к усилению основных свойств. Фенильный радикал C6H5— проявляет отрицательный мезомерный (-М) эффект и уменьшает электронную плотность на атоме азота:
В водном растворе амины обратимо реагируют с водой: R-NH2 +H2O ⇄[R-NH3]++ OH- |
2. Амины реагируют с кислотами, образуя соли: CH3-NH2 + H2SO4 [CH3NH3]HSO4 C6H5NH2 + HCl [C6H5NH3]Cl Cоли аминов — твердые вещества без запаха, хорошо растворимые в воде, но не растворимые в органических растворителях (в отличие от аминов). При действии щелочей на соли аминов выделяются свободные амины: [CH3NH3]Cl + NaOH -t CH3NH2 + NaCl + H2O Соли аминов вступают в обменные реакции в растворе: [CH3NH3]Cl + AgNO3 -t [CH3NH3]NO3+ AgCl ↓ |
3. Амины способны осаждать гидроксиды тяжелых металлов из водных растворов: 2R-NH2 + FeCl2 + 2H2O Fe(OH)2↓+ 2[RNH3]Cl |
4. Горение. Амины сгорают в кислороде, образуя азот, углекислый газ и воду: 4 С2Н5NH2 + 15O2 8CO2 + 2N2 + 14 H2O |
5*. Реакции с азотистой кислотой. а) Первичные алифатические амины при действии азотистой кислоты превращаются в спирты: R-NH2 + NaNO2 + HCl R-OH +N2 + NaCl + H2O б) Вторичные амины (алифатические и ароматические) дают нитрозосоединения — вещества с характерным запахом: R2NH + NaNO2 + HCl R2N-N=O + NaCl + H2O |
6. Особенности свойств анилина: Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов. - бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком. - бензольное кольцо становится более активным в реакциях замещения, чем бензол. Аминогруппа - заместитель 1-го рода (активирующий орто-пара-ориентант в реакциях электрофильного замещения в ароматическом ядре). Качественная реакция на анилин: реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок ↓).
|