10. Эмиссионный и атомно-абсорбционный спектральный анализ загрязнения почв
Атомно-эмиссионным спектральным анализом называется метод определения химического состава, основанный на изучении атомных спектров вещества, возбуждаемых в горячих источниках света.
Спектр — это излучение, разложенное по длинам волн, заключает в себе информацию о качественном и количественном составах анализируемого объекта.
Каждому виду атомов (элементу) присущ строго определенный, характерный спектр.
По характерным линиям в спектрах атомов можно идентифицировать элементы, содержащиеся в анализируемом образце (качественный спектральный анализ), а по относительным интенсивностям спектральных линий можно определять концентрации элементов в исследуемом образце (количественный анализ).
Принципиальная схема эмиссионного спектрального анализа сводится к следующему:
а) перевод вещества в парообразное состояние;
б) возбуждение атомов и ионов;
в) разложение испускаемого атомами света в спектр;
д) регистрация и расшифровка полученных спектров.
Возникновение эмиссионных спектров. При нагревании твердых и жидких веществ >600 °С наблюдается излучение красного свечения (красное каление). При температурах > 1000 °С вещества излучают белый свет (белое каление). Характер свечения веществ не зависит от химического состава. Излучение представляет сплошной спектр, отдельные линии сливаются друг с другом.
Линейчатые спектры, характерные для отдельных элементов, можно наблюдать только в том случае, когда проба атомизирована, т.е. находится в паро- или газообразном состоянии. Различия спектров является следствием того, что атомы каждого элемента имеют характерное, только им присущее электронное строение.
Атомы всех элементов могут находиться в нормальном (основном) и возбужденном состоянии.
В нормальном состоянии атомы обладают минимальной энергией Ео, и при этом они света не излучают. Но они могут перейти в возбужденное состояние вследствие различных причин. Например, при тепловом движении вследствие сильного неупругого соударения с другими атомами или в результате бомбардировки потоком движущихся с определенной энергией частиц-электронов.
Энергия, необходимая для возбуждения атома, называется потенциалом возбуждения. Ее величина зависит от заряда ядра, строения электронных оболочек атома и является функцией положения элемента в Периодической системе элементов Д. И. Менделеева.
К числу трудновозбудимых элементов относятся инертные газы, азот, кислород, водород. К числу легковозбудимых - металлы: натрий, калий, магний и др.
Если атому сообщить достаточно большую энергию, то можно полностью удалить электрон из атома, атом при этом ионизируется. Наименьшая энергия, необходимая для ионизации атома, называется потенциалом ионизации. Возбужденное состояние атомов неустойчиво, в этом состоянии атом находится короткое время (~10~8 с) и возвращается в нормальное состояние. При переходе атома из возбужденного состояния в нормальное высвобождается избыток энергии в виде кванта света.
Атомно-абсорбционным спктральный анализом называется метод количественного элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора, пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетические состояния. Этим переходам в атомных спектрах соответствуют так называемые резонансные линии, характерные для данного элемента.
Согласно закону Бугера-Ламберта-Бера, мерой концентрации элемента служит оптическая плотность (А)
A = lg(I0/I)
где I0 и I-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой.
Рис. 1. Принципиальная схема пламенного атомно-абсорбционного спектрометра:
1-источник излучения; 2-пламя; 3-монохроматор; 4-фотоумножитель;
5-регистрирующий или показывающий прибор.
Перевод анализируемого объекта в атомизированное состояние и формирование поглощающего слоя пара определенной и воспроизводимой формы осуществляется в атомизаторе-обычно в пламени или трубчатой печи.
Наиболее часто используют пламя смесей ацетилена с воздухом (tmax= 2000°С) и ацетилена с N2O (2700°С).
Горелку со щелевидным соплом длиной 50-100 мм и шириной 0,5-0,8 мм устанавливают вдоль оптической оси прибора для увеличения длины поглощающего слоя.
Атомно-абсорбционные спектрометры (ААС) предназначены для проведения количественного элементного анализа (до 70 элементов) по атомным спектрам поглощения, в первую очередь для определения содержания металлов в растворах их солей: в природных и сточных водах, в растворах-минерализатах консистентных продуктов, технологических и прочих растворах.
Основные области применения атомно-абсорбционных спектрометров (ААС) — контроль объектов окружающей среды (воды, воздуха, почв), анализ пищевых продуктов и сырья для их изготовления, медицина, геология, металлургия, химическая промышленность, научные исследования.
Рис. 2. Атомно-абсорбционный спектрометр
Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральный анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.
- «Методы и приборы контроля окружающей среды и экологический мониторинг»
- 1. Цели, задачи и структура экологического контроля
- 2. Государственный (гэк), производственный (пэк) и общественный экологический контроль (оэк)
- 3. Контроль загрязнения атмосферного воздуха. Периодичность наблюдений.
- 4, 5. Методы и приборы контроля качества вод и состояния почв. Фотометрия
- 6. Методы и приборы измерения шума и вибрации
- 6. Приборы измерения шума, вибрации, теплового излучения и электромагнитных полей
- 7. Выбор места контроля загрязнения и поиск его источника с целью первичной оценки и/или отбора проб
- 8. Молекулярная спектроскопия (фотометрия, спектрофотометрия)
- 9. Устройство и работа концентрационного фотоэлектроколориметра (кфк-2)
- 1. Описание прибора
- 2. Подготовка к работе
- 3. Порядок работы
- 3. 1. Измерение коэффициента пропускания
- 3. 2. Определение концентрации вещества в растворе
- 3. 2. 1. Выбор светофильтра.
- 3. 2. 2. Выбор кюветы.
- 3. 2. 3. Построение градуировочного графика для данного вещества.
- 3. 2. 4. Определение концентрации вещества в растворе.
- 10. Эмиссионный и атомно-абсорбционный спектральный анализ загрязнения почв
- История
- Принцип работы
- Применение
- 11. Газовая хроматография аэрозолей и промышленных выбросов
- 15) Аэрокосмический мониторинг
- 13. Методы экологического мониторинга
- 2 Канал (зеленый):
- Компьютерные методы обработки спутниковых данных
- Наземные
- Физико-химические методы
- Методы биологического мониторинга
- 20) Мониторинг в энергетике