Галогенарены. Получение, номенклатура. Физические и химические свойства.
Галогенарены
Соединения, в которых атомы галогена соединены с атомами углерода бензольного кольца, называются галогенаренами.
Получение галогенаренов
Галогенирование аренов или алкиларенов в ядро
Ph-H+Cl2→Ph-Cl
Разложение арендиазониевых солей
Ph-N+≡N Cl-→Ph-Cl
Химические свойства галогенаренов
Галогенарены значительно менее реакционноспособны, чем галогеналканы. В этом отношении галогенарены сходны с галогеналкенами. Связь C-Г в галогенаренах значительно прочнее,
Замещение атома галогена
1. Гидролиз галогенаренов идет только в жестких условиях. Примером может служить синтез фенола С6Н5ОН из хлорбензола. В промышленности фенол получают нагреванием хлорбензола с гидроксидом натрия до 350°С при 150 ат. Образующийся фенолят натрия превращают в фенол действием разбавленной кислоты:
2. Галоген может быть замещен на углеводородный радикал: I C6H5Br+C2H5Br+2NaС6Н5-С2Н5+2NaBr
Замещения в бензольном кольце
Галогенарены менее реакционноспособны, чем бензол. Они вступают в обычные реакции, характерные для бензольного кольца, в том числе в реакции замещения. Атом галогена оттягивает электроны из бензольного кольца, дезактивируя его, но является орто-, пара-ориентантом.
Физические свойства
галогенуглеводороды представляют собой бесцветные жидкости и твёрдые вещества. В гомологическом ряду наблюдаются такие же изменения как и незамещенных углеводородов. Так с удлинением цепи и ростом молекулярной массы растёт и температура кипения, а при увеличении степени разветлённости температуры кипения падают.
Хотя алкилгалогениды и полярные соединения, но в воде они нерастворимы, вероятно из-за того что они не способны образовывать полярные связи. Они растворимы в обычных органических растворителях.
Иод-, бром-, и полихлорпроизводные тяжелее воды.
Алканолы. Изомерия, номенклатура, методы получения. Физические и химические свойства спиртов.
Общая формула гомологического ряда предельных одноатомных спиртов — CnH2n+1OH. В зависимости от того, при каком углеродном атоме находится гидроксильная группа, различают спирты первичные (RCH2-OH), вторичные (R2CH-OH) и третичные (R3С-ОН). Простейшие спирты:
Первичные:
СН3-ОН СН3-СН2-ОН СН3-СН2-СН2-ОН
метанол этанол пропанол-1
Вторичные Третичный
пропанол-2 буганол-2 2-метилпропанол-2
Изомерия одноатомных спиртов связана со строением углеродного скелета (например, бутанол-2 и 2-метилпропанол-2) и с положением группы ОН (пропанол-1 и пропанол-2).
Номенклатура.
Названия спиртов образуют, добавляя окончание -ол к названию углеводорода с самой длинной углеродной цепью, включающей гидроксильную группу. Нумерацию цепи начинают с того края, ближе к которому расположена гидроксильная группа. Кроме того, широко распространена заместительная номенклатура, по которой название спирта производится от соответствующего углеводородного радикала с добавлением, слова "спирт", например: C2H5OH — этиловый спирт.
Физические свойства. Низшие спирты (до C15) — жидкости, высшие — твердые вещества. Метанол и этанол смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в воде падает. По сравнению с соответствующими углеводородами, спирты имеют высокие температуры плавления и кипения, что объясняется сильной ассоциацией молекул спирта в жидком состоянии за счет образования водородных связей .
Получение.
1. Самый общий способ получения спиртов, имеющий промышленное значение, — гидратация алкенов. Реакция идет при пропускании алкена с парами воды над фосфорнокислым катализатором:
H3PO4
СН2=СН2 + Н2О → СН3—СН2—ОН.
Из этилена получается этиловый спирт, из пропена — изопропиловый. Присоединение воды идет по правилу Марковникова, поэтому из первичных спиртов по данной реакции можно получить только этиловый спирт.
2. Другой общий способ получения спиртов — гидролиз алкилгалогенидов под действием водных растворов щелочей:
R—Br + NaOH → R—OH + NaBr.
По этой реакции можно получать первичные, вторичные и третичные спирты.
3. Восстановление карбонильных соединений. При восстановлении альдегидов образуются первичный спирты, при восстановлении кетонов — вторичные:
R—CH=O + Н2 → R—CH2—OH, (1)
R—CO—R' + Н2 → R—CH(OH) —R'. (2)
Реакцию проводят, пропуская смесь паров альдегида или кетона и водорода над никелевым катализатором.
4. Действие реактивов Гриньяра на карбонильные соединения .
5. Этанол получают при спиртовом брожении глюкозы:
С6Н12О6 → 2С2Н5ОН + 2СО2↑.
Химические свойства спиртов определяются присутствием в их молекулах гидроксильной группы ОН. Связи С-О и О-Н сильно полярны и способны к разрыву. Различают два основных типа реакций спиртов с участием функциональной группы -ОН:
1) Реакции с разрывом связи О-Н: а) взаимодействие спиртов с щелочными и щелочноземельными металлами с образованием алкоголятов; б) реакции спиртов с органическими и минеральными кислотами с образованием сложных эфиров; в) окисление спиртов под действием дихромата или перманганата калия до карбонильных соединений. Скорость реакций, при которых разрывается связь О-Н, уменьшается в ряду: первичные спирты > вторичные > третичные.
2) Реакции сопровождающиеся разрывом связи С-О: а) каталитическая дегидратация с образованием алкенов (внутримолекулярная дегидратация) или простых эфиров (межмолекулярная дегидратация): б) замещение группы -ОН галогеном, например при действии галогеноводородов с образованием алкилгалогенидов. Скорость реакций, при которых разрывается связь С-О, уменьшается в ряду: третичные спирты > вторичные > первичные.
Спирты являются амфотерными соединениями.
Реакции с разрывом связи О-Н.
1. Кислотные свойства спиртов выражены очень слабо. Низшие спирты бурно реагируют со щелочными металлами:
2С2Н5-ОН + 2K→ 2С2Н5-ОK + Н2↑, (3)
но не реагируют с щелочами. С увеличением длины углеводородного радикала скорость этой реакции замедляется.
В присутствии следов влаги соли спиртов (алкоголяты) разлагаются до исходных спиртов:
С2Н5ОK + Н2О → С2Н5ОН + KОН.
Это доказывает, что спирты — более слабые кислоты, чем вода.
2. При действии на спирты минеральных и органических кислот образуются сложные эфиры. Образование сложных эфиров протекает по механизму нуклеофильного присоединения-отщепления :
Н+
С2Н5ОН + СН3СООН СН3СООС2Н5 + Н2О
Этилацетат
C2H5OH + HONO2 C2H5ONO2 + Н2O
Этилнитрат
Отличительной особенностью первой из этих реакций является то, что атом водорода отщепляется от спирта, а группа ОН - от кислоты. (Установлено экспериментально методом "меченых атомов" ).
3. Спирты окисляются под действием дихромата или перманганата калия до карбонильных соединений. Первичные спирты окисляются в альдегиды, которые, в свою очередь, могут окисляться в карбоновые кислоты:
[O] [О]
R-CH2-OH → R-CH=O → R-COOH.
Вторичные спирты окисляются в кетоны:
Третичные спирты могут окисляться только с разрывом С-С связей.
Реакции с разрывом связи С-О.
1) Реакции дегидратации протекают при нагревании спиртов с водоотнимающими веществами. При сильном нагревании происходит внутримолекулярная дегидратация с образованием алкенов:
H2SO4 ,t >150°С
СН3-СН2-СН2-ОН → СН3-СН=СН2 + Н2О.
При более слабом нагревании происходит межмолекулярная дегидратация с образованием простых эфиров:
H2SO4,t< 150°С
2CH3-CH2-OH → C2H5-O-C2H5 + H2O.
2) Спирты обратимо реагируют с галогеноводородными кислотами (здесь проявляются слабые основные свойства спиртов):
ROH + HCl RCl + Н2О
Третичные спирты реагируют быстро, вторичные и первичные - медленно.
Применение. Спирты главным образом используют в промышленности органического синтеза. Этанол - важное сырье пищевой промышленности.
- Органика
- Теория химического строения органических соединений Бутлерова. Ее современная трактовка. Виды и природа химических связей. Взаимное влияние атомов в молекуле и его приода.
- Алканы. Строение, изомерия, номенклатура, физ. Свойства. Способы и источники получения алканов. Химические свойства алканов.
- Полимеризация алкенов. Виды и механизмы цепной полимеризации. Полиэтилен. Полипропилен. Стереорегулярные полимеры.
- Алкины. Строения, изомерия, номенклатура, способы получения, физические свойства. Промышленное получение ацетилена. Химический свойства алкинов. Реакции присоединения, их промышленное значение.
- Алкадиены. Изомерия, номенклатура, получение, физические свойства. Сопряженные диены. Свойства сопряженных π-связей.
- Химические свойства сопряженных диенов. Реакции присоединения. Полимеризация и сополимеризация. Натуральный и синтетический каучук.
- Арены для бензола. Изомерия, номенклатура, природные источники и методы получения. Физические свойства и строение. Химические свойства аренов. Правила замещения в бензольном ядре.
- Галогенпроизводные углеводородов. Химические свойства галогеналканов. Реакции замещения и отщепления. Правило Зайцева.
- Полигалогеналканы. Получение, номенклатура. Физические и химические свойства. Области применения.
- Галогеналкены. Получение, номенклатура. Физические и химические свойства. Поливинилхлорид, фторопласт.
- Галогенарены. Получение, номенклатура. Физические и химические свойства.
- Многоатомные спирты. Гликоли. Классификация, номенклатура, свойства. Получение и применение этиленгликоля и глицерина.
- Фенолы. Изомерия, номенклатура, методы получения. Физические и химические свойства. Полифенолформальдегидные пластмассы.
- Альдегиды и кетоны. Классификация, изомерия, номенклатура, способы получения. Химические свойства карбонильных соеднинений.
- Монокарбоновые кислоты. Классификация и номенклатура. Промышленные и лабораторные методы получения. Физический свойства и строение. Водородная связь.
- Непредельные кислоты. Способы получения, свойства. Акриловая и метакриловая кислоты, полимеры на их основе.