logo search
bestreferat-246761

4.1 Расчет калориферной установки

В сушильных установках для нагрева воздуха применяются нагревательные устройства – паровые калориферы, в которых сушильному агенту передается теплота конденсации теплоносителя – водяного пара. Для нагрева воздуха паром изготавливаются стандартные калориферы из стали в соответствии с ГОСТ 7201-62. В частности наиболее подходящими для проектируемой установки являются биметаллические калориферы со спирально-накатным оребрением типа КПЗ-СК-01АУЗ и КП4-СК-01АУЗ, поскольку эти калориферы характеризуются наиболее высокими теплотехническими показателями по сравнению с калориферами более ранних типов.

Теплообменный элемент калориферов выбранного типа состоит из внутренней стальной трубки 16x1,2 мм и насаженной на нее наружной алюминиевой трубки с накатанным оребрением. В процессе накатки между стальной и алюминиевой трубками образуется надежный механический и термический контакт.

Калориферы биметаллические выпускаются двух моделей: КП3 — средняя модель, имеющая 3 ряда теплопередающих трубок по направлению движения воздуха; КП4 — большая модель, имеющая 4 ряда трубок. Площади фронтальных сечений калориферов с одинаковыми номерами у двух разных моделей совпадают.

Калориферы представляют собой одноходовые теплообменники по трубному и межтрубному пространству и устанавливаются с вертикальным расположением теплопередающих трубок.

Воздухонагреватели с номерами с 6 по 10 снабжены одним патрубком для подвода пара и одним патрубком для отвода конденсата, а калориферы с номерами 10 и 11 — двумя патрубками для подвода пара и одним для отвода конденсата.

При групповой установке боковые щитки воздухонагревателей могут не устанавливаться, что позволяет получить сплошную поверхность нагрева.

Данные для расчета калориферной установки

Ранее рассчитанный массовый расход воздуха через установку:

Влагосодержание воздуха на входе в калориферную установку:

Начальная температура воздуха: t0 =18 °C.

Примем, что калориферная установка размещена в непосредственной близости от сушильного барабана и потери тепла на пути воздуха от калориферов к барабану отсутствуют. Тогда температура воздуха на выходе из калориферной установки будет соответствовать требуемой температуре на входе в барабан: t1 = 128 °C.

Давление греющего пара задано условием расчета:

Выбор схем калориферной установки

В ходе расчета рассматривали параллельно 2 схемы калориферной установки. По первой схеме в ряду предусматривалась установка одного калорифера, по второй – двух. Требуемое число рядов, модель калорифера и его типоразмер определим в ходе расчета.

Выбор калориферов по массовой скорости воздуха

Одной из важных характеристик работы калориферной установки является массовый расход воздуха через фронтальное сечение калорифера. Массовая скорость должна составлять . При меньших скоростях размеры калориферной установки и приточной камеры оказываются слишком громоздкими. При превышении рекомендуемого значения массовой скорости оказывается слишком высоким гидравлическое сопротивление установки, что повышает стоимость вентилятора и увеличивает эксплуатационные расходы (из-за большей мощности электродвигателя вентилятора).

Реальный массовый расход воздуха через калориферную установку нашли из [1], стр.11, ф.(3.12):

Рассчитали из [1], стр.46, ф.(4.1) массовые скорости для соответствующих схем калориферных установок для данных калориферов:

,

где f – площадь фронтального сечения калорифера из [1], стр.43, табл.4.1, m – количество калориферов в ряду (для первой схемы m = 1, для второй m = 2).

Результаты расчетов свели в таблицу:

Из расчетной таблицы видно, что подходящими по массовой скорости являются калорифер №11 и №12 для первой схемы установки и №11 для второй. Их параметры и рассчитывались в дальнейшем.

Расчет требуемых площадей теплообмена

Рассчитали требуемую тепловую мощность калориферной установки из [1], стр.46:

, где .

Из [7], стр.28, табл. 21 нашли температуру конденсации греющего пара заданного давления: tп=161,8 °C.

Рассчитали температурный напор установки:

Оценили величины коэффициентов теплоотдачи при вычисленных значениях массовых скоростей во фронтальном сечении из [1], стр.44, табл.4.2, стр.45, табл.4.4 интерполяцией и определили соответствующие им поверхности теплообмена из [1], стр.47, ф.(4.2):

Результаты расчета свели в расчетную таблицу:

m=1

m=2

K, Вт/м2 К

Fp, м2

K, Вт/м2 К

Fp, м2

Для калориферов типа КП3-СК-01АУЗ

11

51,3

256,2

38,9

337,8

12

43,8

300

-

-

Для калориферов типа КП4-СК-01АУЗ

11

50,8

258,7

36,5

360,1

12

42,0

312,9

-

-

Расчет параметров калориферных установок

Для каждой из рассматриваемых схем калориферных установок определили требуемое количество рядов из [1], стр.48, ф.(4.3):

Аэродинамическое сопротивление установки нашли по [1], стр.48, ф. (4.4):

.

Действительную поверхность теплообмена вычислили по [1], стр.48, ф. (4.4):

.

Рассчитали запас по поверхности по [1], стр.48, ф. (4.6]:

.

Результаты расчетов свели в расчетную таблицу:

F,м2

Δр

m=1

Δр

m=2

n

ΔP, Па

FД, м2

Δ F, %

n

ΔP, Па

FД, м2

Δ F, %

КП3-СК-01 АУ3

11

83,12

128

3

384

249,36

-

35

2

70

332,48

-

12

125,27

60

2

120

250,54

-

-

-

-

-

-

КП4-СК-01 АУ3

11

110,05

149

2

298

220,1

-

45

2

90

440,2

22,2

12

166,25

76

2

152

332,5

6,26

-

-

-

-

-

Выбор схемы установки и калориферов

Анализ результатов расчета, представленных в таблице показывает, что нам подходит только 2х-рядная калориферная установка, общей поверхностью 440,2 м2, с общим сопротивлением ∆руст=90Па; запас по поверхности составляет 22,2%.