1.3.7 Пути развития водородной энергетики
Следует сразу установить, что преимущества водородной энергетики могут быть достигнуты только путем постадийного внедрения этой энергетики (исследование, проектирование, создание опытной установки, небольшая проверка, более крупная проверка и, наконец, полный переход на водородную энергетику). На первой стадии в качестве источника для получения водорода можно использовать уголь, который при нагревании с водой образует смесь СО и Н2; СО затем будет окислен до СО2 и выброшен в атмосферу, а Н2 доставят по трубопроводу на ближайшую установку. Здесь он может быть использован для получения электричества.
Во второй стадии в качестве источника энергии для получения водорода может быть использована ядерная установка; образующийся водород затем будет доставляться в город и применяться для получения электроэнергии или для работы части транспорта.
На третьей стадии может быть использован маленький город (например, с населением 10 000), где будет построена станция для сбора солнечной энергии. Если это гористая местность, можно установить экспериментальные крупные аэрогенераторы.
Важной является четвертая стадия освоения, на осуществление которой необходимы суммы, исчисляемые миллиардами. На этой стадии следует перевести часть энергетики на водород, например, жилищно-коммунальное хозяйство, транспорт, промышленность.
Экологическая "чистота" водорода не вызывает сомнений, если учесть, что практически единственным продуктом его сгорания является вода и что в этом случае полностью отсутствуют характерные для углеводородных топлив загрязняющие атмосферу соединения типа диоксидов углерода и серы, а также паров углеводородов. Кроме того, водород это и достаточно калорийное топливо. По теплотам сгорания (34 ккал/г) он намного превосходит такие классические виды топлива, как углеводороды (10 ккал/г) и древесина (4 ккa/г). Конечно, нельзя не учитывать и большие трудности, связанные с решением и ряда дополнительных задач, таких, как:
а) поиск и разработка первичных источников энергии, которые могут быть использованы для синтеза водорода;
б) безопасность хранения, транспорта и больших количеств газообразного и жидкого водорода;
в) эффективное преобразование энергии водорода при решении ряда конкретных энергетических задач.
Если говорить о поисках и разработках первичных источников, которые могут быть использованы для синтеза водорода, то, вероятно, следует начать с простейшего способа, известного каждому, кто хотя бы немного знаком с химией, - взаимодействия кислот и оснований с металлами:
Zn + (2HCl)aq > (ZnC12)aq + H2 ^
Аl + (2NaOH)aq > (NaAIО2)aq + 3/2H2^
В плане дальнейшего изложения очень важно подчеркнуть, что перспективными для создания водородной энергетики могут считаться только способы, основанные на использовании воды в качестве исходного сырья. Поэтому в дальнейшем при написании тех или иных уравнений химических реакций индекс "aq", характеризующий водную среду, будет опускаться.
Процесс необратим и для получения металла из образовавшихся оксидов (для повторного их применения) требует значительных затрат энергии.
Заслуживают внимания три варианта получения водорода из органического сырья.
Один из них - паровая конверсия металла, являющегося главным компонентом природного газа:
СН4 + Н2О > СО + 3Н2 - 50 ккал
СО + Н2О > СО + Н2 + 10 ккал
______________________________
СН4 + 2Н2О > СО2 + 4Н2 - 40 ккал
Второй более совершенный вариант основывается на парокислородной конверсии:
2СН4 + О2 > 2СО + 4Н2 + 16 ккал
СН4 + Н2О > СО + 3Н2 - 50 ккал
______________________________
7СН4 + 3О2 + Н2О > 7СО + 15Н2
Последующий процесс, связанный с конверсией СО, протекает, как и в первом варианте. Однако, как следует из уравнений в обоих вариантах, требуется затрата больших количеств дефицитного природного газа как исходного сырья.
Третий вариант основан на использовании процесса газификации угля:
2Ств + О2 > 2СО + 55 ккал
СТВ + Н2О пар > СО + Н2 - 30 ккал
Комбинацией этих двух реакций можно получить смесь СО и Н2 называемую "водяным газом" или «синтез газом». В последнее время метод получения водорода из воды и угля считается одним из наиболее перспективных. Весьма перспективным, по мнению специалистов, является вариант использования водяного пара для восстановления окислов железа при 800-9000С:
2FезО4 + СО + Н2 > 6FеО + Н2О + СО2 - 22 ккал
с последующей обработкой FeO водяным паром при 600-700 0С. После конденсации паров воды можно получить чистый водород:
3FeO + Н2О>Feз О4 + Н2 + 16ккал
Экономичность процесса здесь возрастает вследствие того, что последняя реакция экзотермична и позволяет некоторое количество выделяющегося тепла использовать для нагрева водяного газа до температур, при которых в соответствии с данной реакцией имеет место восстановление окислов железа. Несмотря на определенные трудности, железопаровой вариант получения водорода привлекает в настоящее время внимание большого числа исследователей во всех странах мира, поскольку связан с возможностью использования дешевых низкосортных углей в качестве восстановителя водяного газа. Казалось бы, самым простым и чистым способом получения водорода должен быть электролизный способ, непосредственно расщепляющий молекулу воды на водород и кислород. Однако этот процесс сам требует много электрической энергии и экономически пока остается невыгодным [2, 4, 5-15].
В электрохимии имеется такое понятие, как перенапряжение. Оно связано с избыточным напряжением, которое нужно приложить к электролитической ванне сверх ее равновесной электродвижущей силы для того, чтобы мог протекать процесс электролиза. При электролизе воды с целью получения водорода на катоде перенапряжение увеличивает необходимое электрическое напряжение и происходит дополнительный расход энергии. При величине напряжения в 0,3 В на каждые 1000 кг водорода требуется дополнительный расход 8300 квт-ч электроэнергии. Большая величина перенапряжения выделения водорода обусловливает то, что стоимость электролизного водорода пока в 2 - 2,5 раза выше стоимости водорода, получаемого из природного газа. В этой связи, однако, заслуживает должного внимания возможность практического осуществления варианта комбинирующего электролиза с прямым пиролизом воды. Последняя реакция (реакция пиролиза воды) сама по себе кажется весьма перспективной и первоначально заслуживает самостоятельного рассмотрения [4, 16-18].
l.3.8 Пuролuз воды
Для того, чтобы получать водород за счет термического разложения воды
2 Н2О - Н2 + О2
нужно очень много тепла, т.е. нужно нагревать водяной пар до температур порядка нескольких тысяч градусов. Такой процесс может быть осуществлен только с применением устройств типа дугового плазмотрона. Однако здесь может быть применен принцип так называемых термохимических циклов, сущность которого состоит в том, что сильно эндотермический процесс разложения воды может быть расчленен на ряд последовательно чередующихся эндо - и экзотермических стадий, каждая из которых для своего осуществления требует значительно более низких температур, чем реакция (13). В свою очередь, возможность получения водорода путем термохимических реакций с использованием низкотемпературного тепла (700 - 900 ОС) открывает перспективы широкого использования тепла атомных реакторов. Это тем более заманчиво, что таким образом решаются проблемы получения водорода и утилизации тепла атомных реакторов, которое представляет возможную угрозу тепловому балансу в биосфере. Как правило, экзотермические стадии связаны с образованием неустойчивых продуктов окисления, и в частности кислорода в реакции (13). Совершенно очевидно, что в нашем случае для того, чтобы термохимический цикл не «разомкнулся», нужно, чтобы продукты окисления обладали невысокой термической стабильностью и легко отдавали кислород при умеренном нагревании.
Таким образом, простейший, скажем двухстадийный (в идеале), цикл можно схематически представить следующим образом:
Х + Н2О > ХО + Н2;
ХО > Х + 1/2 О2.
Здесь первая стадия идет с выделением тепла самопроизвольно или при нагревании до невысоких температур, а вторая стадия протекает с поглощением тепла. Идеальный двухстадийный цикл пока трудно предложить. Более реальны трех-четырехстадийные термохимические циклы, как, например, цикл, именуемый «Марк-9»:
2FeCl2 + 8Н2О(г) > 2Fе2Оз + 12НСI + 2Н2О; (15)
2FезО4 + ЗСl2 + 12НСI > 6FеСlз + 6Н2О (г) + О2; (16)
6FеСlз > 6FeCl2 + ЗСl2 (17)
Стадия (15) эндотермична: 600 - 700 єС; стадия (16) экзотермична: 150 - 200 єС; стадия (17) эндотермична: 400 - 450 єС. Следует, однако, указать, что в данном термохимическом цикле, равно как и в других разрабатываемых циклах, приходится сталкиваться с многими трудностями технического характера, усложняющими на сегодня практическую реализацию этих вариантов в широких масштабах. По мнению специалистов, значительно ближе к осуществлению варианты термоэлектрохимического разложения воды, комбинирующего термохимические циклы с электрохимическими. Примером может служить сернокислотный цикл, основанный на том, что потенциал окисления сернистой кислоты до серной (0,18 В) существенно ниже потенциала «окисления» воды (1,3 В):
Н2SОз + SОз + 3 Н2О > 2H2SО4 + 2Н2 (18)
2Н2SО4 > 2Н2О + 2Н2, + SO2 + О2 , (19)
где стадия (19) - эндотермическая реакция при 800 - 900 єС и давлении до 10 атм, а стадия (18) - обычный электролиз водного раствора сернистой кислоты, протекающий при нормальной температуре [3, 4].
Из всего сказанного следует, что у водородной энергетики при условии ее дальнейшего совершенствования есть великолепный шанс внести ощутимый вклад в энергетическую систему мира [19 - 22].
Глава 2. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ СОЗДАНИЯ ВОДОРОДНОЙ ЭНЕРГЕТИКИ (ДЛЯ УЧАЩИХСЯ СРЕДНЕЙ ШКОЛЫ)
Введение в проблему водородной энергетики для учащихся 9 классов на первом этапе возможно в виде как приведенных ниже выполненных самим учителем докладов, так и небольших сообщений, подготовленных самими учениками [23-24].Первое вводное сообщение выполняется учителем:
- ВВЕДЕНИЕ
- Глава 1. ОСНОВЫ СОЗДАНИЯ ВОДОРОДНОЙ ЭНЕРГЕТИКИ
- 1.1 Основные концепции надежности и экологической безопасности объектов энергетики
- 1.2 Энергетика сегодня
- 1.2.1 Энергетические потребности, ресурсы и возможности
- 1.2.2 Экологические проблемы энергетики и пути их решения
- 1.2.2.1 Парниковый эффект
- 1.2.2.2 Загрязнение атмосферы
- 1.3 Особенности альтернативной водородной энергетики
- 1.3.1 Назначение, основные функциональные показатели
- 1.3.2 Область применения
- 1.3.3 Основания для выбора
- 1.3.4 Состояние и тенденция развития
- 1.3.5 Влияние водородной энергетики на окружающую среду
- 1.3.7 Пути развития водородной энергетики
- 2.1 Сообщение 1. Суть водородной энергетики
- 2.2 Сообщение 2. Выполняется учениками, на основе материалов, предоставленных учителем