3.1 Характеристика метода абсорбции
Абсорбцией называют процесс поглощения газа жидким поглотителем, в котором газ растворим в той или иной степени. Обратный процесс - выделение растворенного газа из раствора - десорбция. В абсорбционных процессах участвуют две фазы - жидкая и газообразная; происходит переход вещества из газовой фазы в жидкую или в обратном направлении при десорбции. Поглощаемые составные части называют абсорбируемыми компонентами, а непоглощаемые составные части - инертным газом. Во многих случаях поглотитель представляет собой раствор активного компонента, вступающего в реакцию с абсорбируемым компонентом газовых смесей. Инертный газ и растворитель являются носителями в соответствующих фазах.
Существует два вида абсорбции: физическая и химическая. При физической абсорбции поглощение газа не сопровождается протеканием химической реакции. При химической абсорбции поглощаемый компонент взаимодействует с каким-либо компонентом жидкой фазы или с самим растворителем с образованием химического элемента. [3]
Содержание газа в растворе зависит от свойств газа и жидкости, давления, температуры и состава газовой фазы (парциального давления растворяющегося газа в газовой смеси). В состоянии равновесия между концентрациями газа в обеих фазах устанавливается некоторое соотношение, характеризуемой константой фазового равновесия m. Она равна отношению концентрации газа в газовой фазе к его концентрации в жидкой фазе.
В зависимости от единиц измерения концентрации константа m выражается различными величинами:
· если концентрации обеих фаз выражены в мольных долях, то константу фазового равновесия обозначают mxy:
где y - концентрация абсорбируемого компонента в газовой фазе; x - концентрация поглощенного вещества в жидкой фазе.
· если концентрации компонента C в обеих фазах выражены в кмоль/м3 или c - кг/м3, то константы фазового равновесия обозначают mC и mc соответственно:
Здесь индексы «г» и «ж» указывают на принадлежность соответственно газовой и жидкой фазе. Для бинарных растворов при физической абсорбции можно воспользоваться уравнением Кричевского
где f - фугитивность (летучесть) растворенного газа; x - концентрация раствора; x02 - мольная доля поглотителя в растворе (x0 = 1 - x); К - коэффициент растворимости ( коэффициент Генри); A - постоянная.
В идеальных растворах силы взаимодействия между молекулами каждого из компонентов раствора, а также между молекулами разных компонентов равны. Для таких растворов коэффициент активности равен единице. При низких значениях фугитивность можно заменить на равновесное парциальное давление компонента в газе p , тогда
где pk - давление насыщенного пара чистого компонента. [1]
Уравнение (3.2) выражает закон Рауля: Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.
Уравнение (3.2) применимо к растворам таких газов, критическая температура которых выше температуры раствора и которые, таким образом, способны конденсироваться при температуре процесса. Если температура раствора выше критической температуры газа, то применяют уравнение (3.3)
причем mpx = К. [3]
Уравнение (3.3) выражает закон Генри: при постоянной температуре растворимость газа в данной жидкости прямо пропорциональна давлению этого газа над раствором.
- ВВЕДЕНИЕ
- 1. ИДЕНТИФИКАЦИЯ ВРЕДНОЙ ПРИМЕСИ
- 2. РАСЧЕТ НЕКОТОРЫХ СВОЙСТВ КОМПОНЕНТА ГАЗОВОЗДУШНЫХ ПРИМЕСЕЙ
- 2.1 Токсикологическая характеристика N-метилформамида
- 3. ОЧИСТКА ВОЗДУХА ОТ ПАРОВ N-МЕТИЛФОРМАМИДА МЕТОДОМ АБСОРБЦИИ
- 3.1 Характеристика метода абсорбции
- 3.2 Расчет равновесной концентрации абсорбата xаб при использовании чистой и артезианской воды
- 4. РЕКТИФИКАЦИЯ РАСТВОРА N-МЕТИЛФОРМАМИДА В ВОДЕ
- 4.1 Характеристика процесса ректификации [4]
- 4.2 Расчет процесса ректификации
- 5. КИНЕТИКА БИОЛОГИЧЕСКОЙ ОЧИСТКИ НИЗКОКОНЦЕНТРИРОВАННЫХ РАСТВОРОВ ОТ ОРГАНИЧЕСКИХ ВЕЩЕСТВ
- 5.1 Принципы очистки сточных вод
- 5.4 Прогноз изменения времени процесса при колебаниях температуры ±5 0С и увеличении концентрации сточных вод в 10 раз
- ЗАКЛЮЧЕНИЕ
- 1.4 Недостатки и преимущества абсорбционного метода очистки газов
- 1.4 Недостатки и преимущества абсорбционного метода очистки газов
- 69 Абсорбционные методы очистки газов: сущность, достоинства и
- 50. Абсорбционные и адсорбционные методы очистки газов
- 2.11. Способы очистки газовых выбросов
- 3.1 Абсорбционная очистка газов
- 16. Абсорбционные методы очистки газов от сероводорода и галогенов.
- Практическая работа 2 абсорбционная очистка газов