Билет №24 Скорость гомогенной реакции. Средняя и истинная скорость реакции. Закон действия масс. Константа скорости реакции. Понятие о молекулярности и порядке реакции.
Скорость химической реакции
величина, характеризующая интенсивность реакции химической (См. Реакции химические). Скоростью образования продукта реакции называется количество этого продукта, возникающее в результате реакции за единицу времени в единице объёма (если реакция гомогенна) или на единице площади поверхности (если реакция гетерогенна). Для исходных веществ аналогичным образом определяется скорость их расходования. Количества веществ выражают в молях (См. Моль). Тогда скорости образования продуктов и расходования исходных веществ относятся как стехиометрия, коэффициенты этих веществ в уравнении реакции. Например, в случае реакции N2 + ЗН2 = 2NH3 скорость расходования водорода в 3 раза, а скорость образования аммиака в 2 раза больше скорости расходования азота. Отношение скорости образования продукта реакции, или скорости расходования исходного вещества, к соответствующему стехиометрическому коэффициенту называется С. х. р. В случае гомогенной реакции, происходящей в закрытой системе постоянного объёма, С. х. р. ci — концентрация продукта реакции, т. е. число молей его в единице объёма, bi — стехиометрический коэффициент этого вещества, t — время. Это уравнение применимо и к исходному веществу, если, как принято, стехиометрические коэффициенты исходных веществ считать отрицательными.
Для технических целей скорости гетерогенно-каталитических реакций обычно рассчитывают не на единицу поверхности катализатора, а на единицу массы катализатора или на единицу объёма слоя гранул катализатора.
С. х. р. может варьировать в чрезвычайно широких пределах — от очень малой (в случае геологического процессов, длящихся миллионы лет) до очень большой (в случае ионных реакций, завершающихся за миллионные доли секунды). О теории С. х. р. см. Кинетика химическая.
Для измерения С. х. р. служат разнообразные методы. Выбор метода определяется характером реакции и её скоростью. Не затрагивая реакций специальных типов (электродные, фотохимические, радиационно-химические), охарактеризуем основные методы измерения скоростей обычных реакций, обусловленных энергией теплового движения. При использовании статического метода реакцию проводят в замкнутом сосуде. О её скорости судят по изменению состава реагирующей смеси на основании анализа проб или по какому-либо свойству реагирующей смеси, зависящему от состава. В случае газовых реакций, сопровождаемых изменением числа молекул, часто следят за реакцией по изменению давления. Проточный метод заключается в том. что реагирующую смесь пропускают с постоянной скоростью сквозь зону реакции: для гетерогенной реакции — это обычно объём, заполненный гранулами катализатора; в случае гомогенной реакции — область повышенной температуры. Степень превращения исходных веществ в продукты определяют по составу смеси, выходящей из зоны реакции.
Оба указанных метода просты для осуществления, но не дают непосредственно значения С. х. р. В статической системе состав реагирующей смеси, а следовательно и С. х. р., изменяется во времени; поэтому требуется дифференцирование измеренной величины концентрации по времени для определения скорости реакции или интегрирование по времени теоретические выражения скорости реакции для сопоставления его с опытными данными. В случае проточного метода состав реагирующей смеси не зависит от времени, но различен в разных участках зоны реакции; поэтому сопоставление теоретического выражения для С. х. р. с результатами опыта требует предварительного интегрирования этого выражения по объёму зоны реакции.
Прямое измерение скорости гомогенной реакции достигается с помощью проточного перемешиваемого реактора. В сосуд, снабженный мощной мешалкой, с постоянной скоростью вводят исходные вещества и выводят реагирующую смесь так, чтобы её количество в реакционном сосуде было постоянно. При установившемся стационарном состоянии анализ отбираемой смеси показывает состав реагирующей смеси. Зная, кроме того, скорость отбора этой смеси, определяют количество вещества, образовавшегося в результате реакции за единицу времени, а отсюда — С. х. р. Для гетерогенно-каталитических процессов с неподвижным катализатором эквивалентом описанного метода является проточно-циркуляционный метод: однородность состава реагирующей смеси в зоне реакции достигается с помощью создаваемой насосом интенсивной циркуляции реагирующей смеси. Проточные перемешиваемые реакторы и проточно-циркуляционные системы принадлежат к классу безградиентных реакторов, называемых так потому, что в них практически отсутствуют градиенты (перепады) концентраций, а также температуры в зоне реакции.
Особые трудности возникают при изучении очень быстрых реакций в растворах. Если реакция успевает пройти в значительной степени за время, которое требуется для смешения растворов исходных веществ, то обычные методы непригодны. Задача измерения скоростей таких реакций решается с помощью релаксационных методов, разработанных М. Эйгеном. Система, в которой может происходить обратимая реакция, вначале находится в состоянии равновесия химического (См. Равновесие химическое). Затем весьма быстро изменяют параметр, влияющий на значение константы равновесия: температуру, давление или электрическое поле. Система переходит к новому состоянию равновесия в течение некоторого времени; этот процесс называется релаксацией (См. Релаксация). Следя за изменением состава каким-либо безынерционным методом (например, по электропроводности), определяют С. х. р. Удаётся наблюдать время релаксации до 10-6 сек: таким путём была измерена, например, скорость реакции Н++ OH- = H2O в воде.
Закон действующих масс в кинетической форме (основное уравнение кинетики) гласит, что скорость элементарной химической реакции пропорциональна произведению концентраций реагентов в степенях, равных стехиометрическим коэффициентам в уравнении реакции[1]. Это положение сформулировано в 1867 году норвежскими учёными К. Гульдбергом и П. Вааге. Для элементарной химической реакции:
закон действующих масс может быть записан в виде кинетического уравнения вида:
где —скорость химической реакции, —константа скорости реакции.
Для сложных реакций в общем виде это соотношение не выполняется. Тем не менее, многие сложные реакции условно можно рассматривать как ряд последовательных элементарных стадий с неустойчивыми промежуточными продуктами, формально эквивалентный переходу из начального состояния в конечное в «один шаг». Такие реакции называют формально простыми[2]. Для формально простых реакций кинетическое уравнение может быть получено в виде:
(для трех исходных веществ, аналогично приведённому выше уравнению). Здесь ,,—порядок реакции по веществам ,,соответственно, а сумма— общий (или суммарный) порядок реакции.,,могут быть не равны стехиометрическим коэффициентам и не обязательно целочисленные.при определённых условиях может быть равно и нулю.
Впервые закон действующих масс был выведен из кинетических представлений Гульдбергом и Вааге, а термодинамический вывод его дан Вант-Гоффом в 1885 году[3].
Пример: для стандартной реакции
константа химического равновесия определяется по формуле
Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение умножается на −1.
Например для реакции:
выражение для скорости будет выглядеть так:
.
Константа скорости реакции (удельная скорость реакции) — коэффициент пропорциональности в кинетическом уравнении.
Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л.
Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации.
Молекулярность реакции
Молекулярность элементарной реакции — число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.
Мономолекулярные реакции — реакции, в которых происходит химическое превращение одной молекулы (изомеризация, диссоциация и т. д.):
H2S → H2 + S
Бимолекулярные реакции — реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или различных):
СН3Вr + КОН → СН3ОН + КВr
Тримолекулярные реакции — реакции, элементарный акт которых осуществляется при столкновении трех частиц:
О2 + NО + NО → 2NО2
Реакции с молекулярностью более трёх неизвестны.
Для элементарных реакций, проводимых при близких концентрациях исходных веществ, величины молекулярности и порядка реакции совпадают. Чётко определенной взаимосвязи между понятиями молекулярности и порядка реакции нет, так как порядок реакции характеризует кинетическое уравнение реакции, а молекулярность — механизм реакции.
- Правило Клечковского
- Билет №11 Химическая связь и строение молекул.
- Билет №13-14 Кратность связи. Сигма и пи связи, схемы перекрывания ао и прочность связей. Полярные связи и мол-лы.
- Билет №15 Энергетические диаграммы обр. Молекул n2 и о2. Кратность связи и магнитные св-ва.
- Билет №16 Ионная связь и её св-ва. Строение ионных кристаллов типа СsCl , NaCl , ZnS (сфалерит) и CaF2 (флюорит)
- Свойства ZnS (сфалерит)
- Билет №17 Металлическая связь и её св-ва.Кристаллические структуры металлов типа вольфрама, меди и магния. Координационные числа и плотность упаковки атомов.
- Билет №19 Агрегатные состояния вещества и их характеристика. Плазма. Стекла и аморфные вещества. Понятие о ближнем и дальнем порядках.
- Формы плазмы
- Билет №20 Энергетический (тепловой) эффект изохорного и изобарного химических процессов. Стандартная энтальпия образования химического соединения. Закон Гесса и следствие из него.
- Билет №23 Направление химической реакции. Понятие о свободной энергии Гиббса и её изменении как движущей силы изобарного процесса. Стандартное изменение энергии Гиббса при хим. Реакции.
- Билет №24 Скорость гомогенной реакции. Средняя и истинная скорость реакции. Закон действия масс. Константа скорости реакции. Понятие о молекулярности и порядке реакции.
- Порядок химической реакции
- Билет №27 Катализаторы химических реакций. Представление о механизме катализа. Специфичность катализа. Примеры и роль каталитических процессов при химической переработке древесного сырья.
- Билет №28 Растворы. Процессы при образовании растворов. Идеальные и реальные растворы. Гидраты и сольваты.
- Билет №30 Растворимость газов, жидкостей и твердых веществ в жидкостях. Закон Генри. Ненасыщенные, насыщенные и перенасыщенные растворы.
- Растворение как физико-химический процес
- Растворимость
- Растворы неэлектролитов. Понятие об осмосе и осмотическом давлении. Закон Вант-Гоффа. Изотонические растворы. Роль осмоса в жизни растений.
- Билет №32 Давление насыщенного пара растворителя над раствором нелетучего растворённого вещества. Закон Рауля. Температура замерзания и кипения растворов (влияние концентрации)
- Билет №33 Растворы электролитов. Сильные и слабые электролиты. Связь кажущейся степени диссоциации и изотоническим коэффициентом(см. Конспект). Понятие об активности и ионной силе раствора.
- Билет №34 Обменные реакции между ионами. Молекулярные и ионные уравнения реакций. Условия необратимости ионных реакций.
- Билет №35 Степень и константа диссоциации слабого электролита. Закон разбавления Оствальда. Ступенчатая диссоциация электролита. Влияние общих ионов на диссоциацию слабых электролитов.
- Вывод значения pH
- Билет №37 Растворимость малорастворимых твердых электролитов в воде. Произведение растворимости (пр). Влияние общих ионов на растворимость. Амфотерные гидроксиды и оксиды.
- Билет №38 Гидролиз солей по катиону, аниону, катиону и аниону. Ступенчатый гидролиз. Необратимый совместный гидролиз солей.