28.3.1.Производство полиэтилена, полипропилена и полистирола
Производство полиэтилена было и остается самым крупномасштабным процессом на основе этилена. Фактически более половины этилена, получаемого нефтяной и нефтехимической промышленностью, идет на производство полиэтилена.
В промышленности в настоящее время производится три различных типа полиэтилена. Первый из них, так называемый полиэтилен низкой плотности, впервые был получен английской фирмой ICI в 1933 году, и его промышленное производство началось в 1938 году.
Полиэтилен низкой плотности получается в результате свободнорадикальной полимеризации этилена, инициируемой кислородом или органическими пероксидами, при температуре ст 80 до 300оС и давлении 1000-3000 атм.(100-300 МПа). В нашей стране его обычно называют полиэтиленом высокого давления. Он представляет собой белый относительно мягкий, гибкий аморфный пластик, из которого изготовляют упаковочный материал в виде пленки. Степень полимеризации (число молекул мономера, соединенных друг с другом при образовании полимера) у полиэтилена высокого давления достигает примерно 1800, что соответствует средней молярной массе 50000, температура размягчения такого полимера составляет 110-115оС.
Механизм свободнорадикальной полимеризации этилена включает стадии инициирования радикальной цепи, роста цепи и ее обрыва.
Обрыв цепи происходит в результате сдваивания или диспропорционирования двух макромолекулярных свободных радикалов:
Если бы полимеризация этилена происходила строго в соответствии с приведенными выше уравнениями, полиэтилен высокого давления имел бы регулярное линейное строение...-(СН2-СН2)n-... Его резальное строение сильно отличается от линейного. Полиэтилен высокого давления (т.е. низкой плотности) имеет длинную углерод-углеродную цепь с большим числом коротких ответвлений. Эти ответвления возникают в результате реакции меж- или внутримолекулярного переноса цепи, при котором отщепление атома водорода приводит к перемещению активного радикального центра от одного атома углерода к другому по углеродной цепи. Во внутримолекулярном переносе цепи радикальный центр перемещается сразу через несколько углеродных атомов цепи, что способствует созданию разветвлений:
При межмолекулярном характере переноса цепи активный радикальный центр перемещается от растущего радикала к конечному полимеру. Это приводит к образованию длинноцепочечных разветвлений:
Наличие разветвлений оказывает большое влияние на физико-химические характеристики аморфного полиэтилена высокого давления, уменьшая плотность полимера, температуру его размягчения.
Полиэтилен высокой плотности образуется в результате так называемой координационной полимеризации этилена на катализаторе, состоящем из смеси триэтилалюминия и хлорида титана (IV). Полимеризация этилена осуществляется в растворе в бензине или газовой фазе в присутствии Аl(С2Н5)3 и ТiCl4 при 80-100°С и давлении 2-4 атм (2.105-4.105 Па). Этот тип полимеризации был открыт К.Циглером в 1953 году и уже в 1955 году реализован в промышленном масштабе. Полиэтилен, полученный полимеризацией в таких условиях, называют обычно полиэтиленом низкого давления. Такой полиэтилен имеет строго линейное строение и обладает кристаллической структурой, молекулярная масса полиэтилена низкого давления достигает 1 млн, а температура размягчения 135оС.
В 1970 году освоено промышленное производство так называемого линейного полиэтилена низкой плотности. Так называется продукт сополимеризации этилена с небольшим количеством бутена-1 или гексена-1 на катализаторах Циглера. Эти "пришивки" к полимеру создают короткие регулярные разветвления и такой полимер по своим механическим свойствам оказывается промежуточным между полиэтиленом низкого и высокого давления.
Пропилен получается в качестве побочного продукта при термическом крекинге нафты, газойля и пропана, а также при каталитическом крекинге высших нефтяных фракций. Общее мировое производство пропилена составляет примерно половину от количества производимого этилена, из этого количества около одной трети расходуется на производство полипропилена. Разработка промышленного метода полимеризации пропилена была осуществлена Дж.Натта в 1954 году. Он использовал для полимеризации смешанный катализатор Циглера из триэтилалюминия и четыреххлористого титана, в результате чего координационная полимеризация алкенов и диенов на комплексных катализаторах получила название полимеризации по Циглеру-Натта. Самой характерной и наиболее важной особенностью координационной полимеризации на катализаторе Циглера-Натта является стереохимия полимеризации. Полимеризация пропилена в этом случае происходит стереоспецифично с образованием стереорегулярного полимера с одинаковой конфигурацией всех асимметрических атомов углерода в линейной цепи полимера. Нетрудно заметить, что при полимеризации любого н-алкена-1 в цепи полимера возникают асимметрические атомы углерода. Если их конфигурация во всей цепи одинакова, полимер называется изотактическим. Полимеризация пропилена в присутствии смеси Аl(С2Н5)3 и ТiСl4 приводит к изотактическому полипропилену.
Возможен и другой тип стереорегулярноро полимера, когда конфигурация атомов углерода регулярно чередуется вдоль всей цепи полимера:
Такой стереорегулярный полимер получил название синдиотактического. Синдиотактические полимеры получается, если при полимеризации алкена-1 TiCl4 в катализаторе Циглера-Натта заменить четыреххлористым ванадием.
Полимеры с беспорядочно изменяющейся конфигурацией асимметрического центра вдоль цепи называются атактическими. Атактические полимеры образуются в результате радикальной или катионной полимеризации алкенов и диенов. Радикальная полимеризация пропилена приводит а атактическому полипропилену, не имеющему практически полезных свойств. Изотактический полипропилен, напротив, обладает кристаллической структурой и имеет температуру размягчения 170°С. Изотактический полипропилен используется в виде пленки и искусственного волокна, которое получается при продавливании расплава полипропилена через специальные фильеры. Из этого волокна изготавливают канаты, рыболовные сети, фильтровальные ткани. Они обладают большой прочностью и химической стойкостью. Ежегодное производство изотактического полипропилена в США составляет 1,1 млн тонн.
Тефлон (фторпласт-4) получается при радикальной эмульсионной полимеризации тетрафторэтилена в водной эмульсии. Инициатором полимеризации является реактив Фентона (смесь FeSO4 и Н2О2 или диацетилпероксида):
Тефлон с молярной массой до 2 миллионов обладает очень высокой температурой размягчения (около 330oС) и чрезвычайно высокой стабильностью по отношению к самым разнообразным химическим реагентам. На него не действует концентрированная НNO3 и концентрированная H2SO4 при 250-300оС, расплавленный гидроксид натрия, различные окислители и восстановители. Тефлон практически незаменим при изготовлении аппаратуры, работающей в особо агрессивных условиях, в том числе электроизоляционных материалов, арматуры, применяемой в химическом машиностроении, специальных пленок, подшипников, не требующих смазки, и т.д.
Другие полимерные материалы - поливинилхлорид, поливинилацетат, полиметилметакрилат и полиакрилонитрил будут рассмотрены в других разделах этой главы.
- Глава 28 промышленный органический синтез
- 28.1. Состав и переработка нефти и природного газа 3
- 28.3. Производства на основе этилена и пропилена 10
- 28.4. Бутадиен и бутены 31
- Распределение запасов нефти и природного газа в различных регионах земного шара в %
- 28.1.Состав и переработка нефти и природного газа
- Фракции, получаемые при перегонке сырой нефти в нефтехимической промышленности
- 28.2.Этилен, пропилен и другие продукты термического крекинга этана, пропана и фракций нефти
- Типовое распределение продуктов (в %) термического крекинга этана, пропана, нафты и газойля
- 28.3.Производства на основе этилена и пропилена
- 28.3.1.Производство полиэтилена, полипропилена и полистирола
- 28.3.2 Производство винилхлорида
- 28.3.3. Производство окиси этилена и пропилена, этиленгликоля, пропиленгликоля и полиэтиленгликолей
- 28.3.4. Производство этанола, пропанола-2 и этилхлорида
- 28.3.5. Производство уксусного альдегида и винилацетата
- 28.3.6.Производство акрилонитрила
- 28.3.7.Произвдство акриловой кислоты и эфиров акриловой кислоты
- 28.3.8.Производство аллилхлорида
- 28.3.9.Производство тримера и тетрамера пропилена
- 28.3.10.Производство неразветвленных алкенов-1 и алканолов-1 на основе этилена
- 28.4. Бутадиен и бутены
- 28.4.1. Производство синтетических каучуков на основе бутадиена
- 28.4.2. Производство хлоропренового каучука
- 28.4.3. Производство на основе бутенов
- 28.5. Каталитический риформинг нефти и коксование каменного угля
- 28.5.1. Коксование каменного угля
- 28.5.2. Каталитический риформинг нефти
- Типичное распределение в % ароматических углеводородов, полученных при каталитическом риформинге и из бензина термического крекинга нафты и газойля
- 28.6. Производства на основе бензола
- 28.6.1. Производство стирола
- 28.6.2. Производство циклогексана, циклогексанола и циклогексанона
- 28.6.3. Получение адипиновой кислоты и 1,6-диаминогексана
- 28.6.4. Полиамидные синтетические волокна
- 28.6.5. Получение фенола
- 28.6.6. Получение нитробензола и анилина
- 28.6.7. Получение малеинового ангидрида
- 28.6.8. Производство поверхностно-активных веществ -алкилбензолсульфонатов
- 28.7. Производства на основе толуола и ксилолов
- 28.7.1. Производство толуолдиизоцианата
- 28.7.2. Получение бензойной кислоты, терефталевой и фталевой кислоты
- 28.8. Газовый риформинг и родственные процессы
- 28.8.1. Газовый риформинг
- 28.8.2. Синтез Фишера-Тропша
- 28.8.3. Производство метанола
- 28.8.4. Производства уксусной кислоты, уксусного ангидрида, винилацетата и углеводородов из метанола
- 28.8.5. Гидроформилирование алкенов
- 28.8.6. Гидрокарбонилирование непредельных углеводородов
- 28.9. Производства галогенметанов, сероуглерода, высших алкенов и ацетилена