Расчет конденсатора-холодильника паров бинарной смеси метанол-вода

курсовая работа

1 Тепловой РАСЧЕТ

Исходные данные:

Бинарная смесь метанол-вода

Производительность 160т/сутки

Пары поступают в аппарат при температуре конденсации, конденсат отводится при 18°C

Содержание нк в парах 65%(масс.)

Температура охлаждающей воды:

-на входе 12°C

-на выходе 17°C

Мольная доля смеси:

Построим t-x диаграмму из которой найдем tкип.см = 78°C

Таблица 1. - Расчет содержания низкокипящего компонента при различных давлениях и температуре.

, мм. рт. ст.

, мм. рт. ст.

, мм. рт. ст.

64

760

180

760

1

68

850

215

0,85

72

950

240

0,73

76

1150

310

0,54

80

1200

340

0,49

84

1400

400

0,36

88

1600

510

0,23

92

1700

525

0,20

96

1830

610

0,12

100

2090

760

0

Рисунок 1. t-x диаграмма.

Уравнения теплового баланса

Тепло, отданное смесью метанол-вода при конденсации:

- по правилу аддитивности.

Тепло, отданное при охлаждении конденсата смеси этанол-вода:

и а также и берем при температуре кипения смеси 78°C

Общее тепло, отданное смесью метанол-вода:

Определение промежуточной температуры

Температура смеси между зонами конденсации и охлаждения определяется:

или .

Расчет зоны конденсации.

Средний температурный напор в зоне конденсации, в случае смешанного тока, определяем по уравнению:

Так как и

Наметим вариант теплообменного аппарата.

Ориентировочно определим значение площади поверхности теплообмена, полагая Кор=300 Вт/(м2*К).

.

Расчет зоны охлаждения конденсата.

Ориентировочно определим значение площади поверхности теплообмена, полагая Кор=800 Вт/(м2*К).

Определим количество труб на один ход.

где, Re=15000, так как предполагаем, что режим движения жидкости турбулентный

По табл. XXXIV [стр.533,1] примем двухходовой кожухотрубчатый теплообменник КН (ГОСТ 15119-79) с внутренним диаметром кожуха D=1000 мм, числом ходов равным 2, числом труб на один ход 377 ( общее число труб n=754), высотой труб l=3 м.

Уточняем значение коэффициента Рейнольдса:

Следовательно, в трубном пространстве будет обеспеченно турбулентное движение теплоносителя.

Расчет I зоны конденсации.

Определим поверхность теплообмена зоны конденсации.

Определим коэффициент теплопередачи.

Коэффициент теплопередачи:

Рассчитаем термическое сопротивление стенки и загрязнений.

Считаем, что со стороны органической смеси накипь не образуется. Коэффициент теплопроводности стали =16,4 Вт/(м К), коэффициент теплопроводности накипи =2 Вт/(м К).

Значение физических величин, входящих в это уравнение выбираются из таблиц при температуре плёнки конденсата:

где

Определение коэффициента теплоотдачи от конденсирующего пара к изотермической стенке.

при 74,8°C

для турбулентного режима.

(пренебрегаем

Тогда

Коэффициент теплопередачи:

Определим поверхность теплообмена зоны конденсации.

Расчет II зоны охлаждения.

Определим поверхность теплообмена зоны охлаждения.

Определение коэффициента теплоотдачи от стенки трубы к воде в зоне охлаждения

Поскольку охлаждающая вода в процессе теплопередачи не изменяет своего агрегатного состояния и движется с той же скоростью, что и в зоне конденсации, то логично принять, что:

.

Коэффициент теплопередачи:

.

Определение коэффициента теплоотдачи от стенки трубы к воде.

Примем , .

Делись добром ;)