Качественное обнаружение вольфрама

реферат

Химические свойства

Вольфрам - один из наиболее коррозийноустойчивых металлов. При обычной температуре устойчив к действию воды и воздуха, при температуре 400-500 oC заметно окисляется, при более высокой температуре окисляется интенсивно, образуя триоксид вольфрама желтого цвета. С водородом не взаимодействует даже при очень высоких температурах, с азотом взаимодействует при температуре свыше 2000 oC, образуя нитрид WN2. Твердый углерод при 1100-1200 oC реагирует с вольфрамом, образуя карбиды WC и W2C. На холоду серная, соляная, азотная, фтороводородная кислоты и царская водка на вольфрам не действуют. При температуре 100 oC вольфрам не взаимодействует с фтороводородной кислотой, слабо взаимодействует с соляной и серной кислотами, быстрее взаимодействует с азотной кислотой и царской водкой. Быстро растворяется в смеси фтороводородной и азотной кислот. Растворы щелочей на холоду не действуют на вольфрам; расплавленные щелочи при доступе воздуха или в присутствии окислителей (таких как: нитраты, хлораты, диоксид свинца) интенсивно растворяют вольфрам, образуя соли.

Распределение электронов в атоме вольфрама: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 5d4 6s2. Потенциалы ионизации вольфрама: I1=7.98эВ; I2=17.7эВ. Радиус атома rme=1,40Ao.

Ионные радиусы:

Ион

к.ч.

ri, Ao

W+4

6

0.66

W+5

6

0.62

W+6

4

0.42

5

0.51

6

0.60

В соединениях вольфрам проявляет степени окисления +2, +3, +4, +5, +6. В высших степенях окисления вольфрам обладает кислотными свойствами, в низших - основными. Соединения со степенью окисления +2, +3 неустойчивы. Двухвалентный вольфрам известен лишь в виде галогенидов. Из соединений вольфрама(IV) выделены в твердом виде устойчивые комплексные цианиды. Наибольшее практическое значение в анализе имеют соединения вольфрама(V) и (VI).

Поведение вольфрама в растворах сложно, особенно в кислых, из-за отсутствия простых соединений. Существенное значение в аналитической химии вольфрама имеет его большая склонность к комплексообразованию. Вследствие того, что в комплексных соединениях индивидуальные свойства отдельных элементов проявляются ярче, чем в простых, комплексообразование вольфрама широко используют в определении в присутствии близких по свойствам элементов.

Соединения вольфрама(II) и (III) являются сильными восстановителями, окислительная способность соединений вольфрама(V) проявляется слабо.

Термодинамические данные для вольфрама и его соединений указаны в Таблице 2 (см. Приложение)

До 40-х годов XX века аналитическая химия вольфрама развивалась попутно с аналитической химией молибдена, причем для первого были характерны гравиметрические методы определения. В последние годы успешно исследовалась химия координационных соединений вольфрама, некоторые из которых успешно используются в аналитической химии для определения вольфрама физическими и физико-химическими методами.

Близость свойств вольфрама и молибдена объясняет трудность их разделения и определения при взаимном присутствии. Однако различие в распределении валентных электронов, явление лантаноидного сжатия, испытываемое электронной оболочкой вольфрама, приводят к различию некоторых химических свойств этих элементов. Например, склонность водных растворов вольфрама(VI) к полимеризации и к гидролизу в присутствии минеральных кислот сильнее, чем у молибдена(VI). Вольфрам труднее восстанавливается до определенных низших степеней окисления, стабилизация которых, в отличии от молибдена, сложна и не всегда успешна.

Делись добром ;)