logo
Фармацевтический анализ производных изохинолина (папаверина гидрохлорид)

4. Физические и химические свойства

Папаверина гидрохлорид представляет собой белый кристаллический порошок со слегка горьковатым вкусом, без запаха. Температура плавления -- 225єС. Хорошо растворяется в воде, плохо -- в этиловом спирте, хлороформе, диэтиловом эфире.

Химические свойства хинолина и изохинолина аналогичны свойствам пиридина. Они обладают основными и нуклеофильными свойствами и образуют соли при протонировании сильными кислотами и при алкилировании алкилгалогенидами. Реакции электрофильного замещения протекают по наименее электронодефицитному бензольному кольцу и направляются в хинолине в положения 6 и 8. Нуклеофильные реагенты атакуют пиридиниевый цикл хинолина в положение 2.

При каталитическом гидрировании хинолина в первую очередь затрагивается пиридиниевый цикл. При окислении разрушается бензольный цикл и образуется 2,3- пиридиндикарбоновая кислота.

Процесс замещения атома водорода в хинолине и изохинолине на атом галогена достаточно сложный, и образование того или иного продукта реакции замещения зависит от условий проведения реакции. При бромировании в концентрированной серной кислоте хинолин образует смесь 5- и 8-бромпроизводных, а изохинолин в присутствии хлорида алюминия превращается в 5-бромизохинолин. Все эти процессы проходят с участием протонированных гетероциклов.

Введение атома галогена в гетероциклическое кольцо происходит в значительно более мягких условиях, причём электронная пара атома азота способствует взаимодействию с электрофилом. Так, при обработке гидрохлоридов хинолина и изохинолина бромом образуются 3-бромхинолин и 4-бромизохинолин согласно приведённой ниже схеме:

При нитровании хинолина образуется смесь 5- и 8-нитро-хинолинов приблизительно в равном соотношении, в то время как нитрование изохинолина приводит исключительно к 5-нитропроизводному. Нитрование хинолина и изохинолина происходит в результате атаки нитрониевого иона по N-протонированному гетероциклу:

Сульфирование хинолина приводит к образованию главным образом 8-сульфо-кислоты, а аналогичный процесс в изохинолине идёт по положению 5. При проведении реакции при более высоких температурах в результате термодинамического контроля образуются другие изомеры. Так, хинолин-8-сульфоновая и изохинолин-5-сульфоновая кислоты изомеризуются в 6-сульфоновые кислоты.

Для хиноина и изохинолина возможно восстановление как пиридинового цикла, так и бензольного кольца. Восстановить пиридиновый цикл до тетрагидро-пиридинового можно при действии цианоборгидрида натрия в кислой среде, бор-гидрида натрия в присутствии хлорида никеля(II), боргидрида цинка или в результате каталитического гидрирования в метаноле при комнатной температуре и атмосферном давлении. Однако каталитическое гидрирование в растворе сильных кислот приводит к первоначальному селективному восстановлению бензольного кольца; продолжительное гидрирование в этих условиях приводит к образованию декагидропроизводных.

Восстановление хинолинов и изохинолинов литием в жидком аммиаке в определённых условиях приводит к получению 1,4-дигидрохинолинов и 3,4-дигидроизохинолинов. Образование 1,2-дигидрохинолина и 1,2-дигидроизохинолина происходит при восстановлении алюмогидридом лития.

Эти дигидроструктуры легко окисляются в соответствующие ароматические соединения или превращаются в смесь тетрагидропроизводных и ароматических соединений в результате реакции диспропорционирования, которая наиболее легко проходит в кислых средах. Взаимодействие продуктов восстановления сразу после их образования с хлорформиатами приводит к получению стабильных уретановых дигидропроизводных.

Гетероциклические фрагменты четвертичных солей хинолина и изохинолина восстанавливаются особенно легко как при каталитическом гидрировании, так и при использовании боргидридных реагентов в кислых средах.

Восстановление иодида 1-метилхинолиния трибутилстаннаном приводит к образованию главным образом 1,2-дигидропроизводного, которое при комнатной температуре превращается в 1,4-дигидроизомер. Восстановление этим реагентом при одновременном освещении приводит к образованию исключительно 1,4-дигидроизомера с количественным выходом.