Пептидная связь. Строение пептидов.
Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы —COOH, так и основные свойства, обусловленные аминогруппой —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:
NH2 —CH2 —COOH + HCl → HCl • NH2 —CH2 —COOH (хлороводородная соль глицина)
NH2 —CH2 —COOH + NaOH → H2O + NH2 —CH2 —COONa (натриевая соль глицина)
Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей.
NH2 —CH2COOH N+H3 —CH2COO-
Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию пептидов.
α-Аминокислоты могут ковалентно связываться друг с другом с помощью пептидных связей. Пептидная связь образуется между α-карбоксильной группой одной аминокислоты и α-аминогруппой другой, т.е. является амидной связью. При этом происходит отщепление молекулы воды.
Строение пептида
Количество аминокислот в составе пептидов может сильно варьировать. Пептиды, содержащие до 10 аминокислот, называют олигопептиды Часто в названии таких молекул указывают количество входящих в состав олигопептида аминокислот: трипептид, пентапептид, окгапептид и т.д.
Пептиды, содержащие более 10 аминокислот, называют "полипептиды", а полипептиды, состоящие из более чем 50 аминокислотных остатков, обычно называют белками. Однако эти названия условны, так как в литературе термин "белок" часто употребляют для обозначения полипептида, содержащего менее 50 аминокислотных остатков. Например, гормон глюкагон, состоящий из 29 аминокислот, называют белковым гормоном.
Мономеры аминокислот, входящих в состав белков, называют "аминокислотные остатки". Аминокислотный остаток, имеющий свободную аминогруппу, называется N-концевым и пишется слева, а имеющий свободную α -карбоксильную группу - С-концевым и пишется справа. Пептиды пишутся и читаются с N-конца. Цепь повторяющихся атомов в полипептидной цепи -NH-CH-CO-носит название "пептидный остов".
При названии полипептида к сокращённому названию аминокислотных остатков добавляют суффикс -ил, за исключением С-концевой аминокислоты. Например, тетрапептид Сер-Гли-Про-Ала читается как серилглицилпролилаланин.
Пептидная связь, образуемая иминогруппой пролина, отличается от других пептидных связей, так как атом азота пептидной группы связан не с водородом, а с радикалом.
Пептиды различаются по аминокислотному составу, количеству и порядку соединения аминокислот.
Сер-Гис-Про-Ала и Ала-Про-Гис-Сер - два разных пептида, несмотря на то, что они имеют одинаковые количественный и качественный составы аминокислот.
Образование дипептида
Строение пептидов
Химические реакции, используемые для обнаружения аминокислот
Для обнаружения белка применяют цветные реакции. Они делятся на два типа: общие, или универсальные, и специфические. К универсальным реакциям относятся биуретовая (на пептидную связь) и нингидриновая (на α-аминокислоты). При их помощи можно открыть любой белок. К специфическим относятся реакции на отдельные аминокислоты. Это реакции на функциональные группы радикалов аминокислот, входящих в состав белков. При их помощи можно открыть только тот белок, в состав которого они входят.
Значение цветных реакций состоит в том, что они дают возможность обнаружить присутствие белка в биологических жидкостях, растворах и установить аминокислотный состав различных природных белков. Эти реакции применяются как для качественного, так и для количественного определения белка и содержащихся в нем аминокислот.
Биуретовую реакцию способны давать вещества, которые содержат не менее двух пептидных связей. В щелочной среде раствор белка, взаимодействуя с ионами меди, приобретает сине-фиолетовый цвет. При прибавлении ионов меди образуется биуретовый комплекс в результате соединения меди с пептидной группировкой белка. Окраска биуретового комплекса зависит от количества пептидных связей, концентрации белка и количества ионов меди в растворе. Она изменяется от синей до красной с преобладанием фиолетовой.
Нингидриновая реакция характерна для аминогрупп, находящихся в α-положении и входящих в состав белков, а также полипептидов и свободных аминокислот. В результате взаимодействия α-аминокислоты с нингидрином образуется шиффово основание. Конденсируясь с нингидрином, оно содержит в своем составе радикал исходной аминокислоты, который обусловливает различную окраску: голубую, красную, синюю, фиолетовую, а в присутствии иминокислоты пролина – желтую.
К специфическим реакциям относятся реакции Мульдера, Миллона, Сакагучи, Фоля.
Ксантопротеиновая реакция (Мульдера) происходит только при наличии в белке ароматических аминокислот (тирозин, фенилаланин, триптофан). Реакция обусловлена образованием нитропроизводных циклических аминокислот. При добавлении к таким белкам концентрированной азотной кислоты протекает реакция нитрования с образованием окрашенных в желтый цвет нитросоединений. При добавлении щелочи желтая окраска переходит в оранжевую, так как в щелочной среде нитропроизводные аминокислот образуют соли хиноидной структуры, имеющие оранжевый цвет:
С белками, содержащими тирозин, идет также реакция Миллона. Реактив Миллона представляет собой смесь нитратов (HgNO3) и нитритов (HgNO2) ртути (I), растворенных в концентрированной азотной кислоте. При добавлении к раствору белка реактива Миллона его компоненты взаимодействуют с фенольным ядром тирозина. При этом образуется осадок ртутной соли динитротирозина, окрашенный в кроваво-красный цвет.
К раствору белка не следует добавлять избыток реактива Миллона, так как он содержит азотную кислоту, которая при взаимодействии с белком может дать желтое окрашивание (ксантопротеиновая реакция), маскирующее реакцию Миллона.
Р еакция Сакагучи идет с белками, которые содержат аргинин. В присутствии щелочи образуется розово-красное окрашивание с α-нафтолом.
Белки, содержащие цистеин можно обнаружить при помощи реакции Фоля. При проведении реакции Фоля действуют плюмбитом натрия (Na2PbO2), который образуется в результате взаимодействия ацетата свинца Pb(СН3СОО)2 и гидроксида натрия NaOH, в результате чего образуется черный нерастворимый осадок сульфида свинца.
Метионин хотя и содержит серу, этой реакции не дает, так как сера в нем прочно связана с метильной группой, а не с водородом.