Ароматические углеводороды

реферат

2. Номенклатура и изомерия

Условно арены можно разделить на два ряда. К первому относят производные бензола (толуол или дифенил), ко второму -- конденсированные арены (простейший из них -- нафталин):

Гомологический ряд бензола отвечает общей формуле С6Н2n-6.

Структурная изомерия в гомологическом ряду бензола обусловлена взаимным расположением заместителей в ядре. Монозамещенные производные бензола не имеют изомеров положения, так как все атомы в бензольном ядре равноценны. Дизамещенные производные существуют в виде трех изомеров, различающихся взаимным расположением заместителей.

Положение заместителей указывают цифрами или приставками: орто- (о-), мета- (м-), пара- (п-). Радикалы ароматических углеводородов называют арильными радикалами. Радикал С6Н5 -- называется фенил.

3. Физические свойства

Низшие члены гомологического ряда бензола представляют собой бесцветные жидкости с характерным запахом. Плотность и показатель преломления у них значительно выше, чем у алканов и алкенов. Температура плавления заметно выше, особенно у конденсированных многоядерных углеводородов (табл.). Из-за высокого содержания углерода все ароматические соединения горят сильно коптящим пламенем. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все ароматические углеводороды нерастворимы в воде и хорошо растворимы в большинстве органических растворителей: многие из них хорошо перегоняются с водяным паром.

Химические свойства

Бензол, несмотря на то, что по составу он является ненасыщенным соединением, проявляет склонность преимущественно к реакциям замещения, и бензольное ядро очень устойчиво. В этом заключаются свойства бензола, которые называют ароматическими свойствами. Последние характерны и для других ароматических соединений; однако различные заместители в бензольном ядре влияют на его устойчивость и реакционную способность; в свою очередь бензольное ядро оказывает влияние на реакционную способность соединенных с ним заместителей. Рассмотрим следующие группы реакций ароматических углеводородов: а) реакции замещения, б) реакции присоединения и в) действие окислителей.

Реакции замещения. При замещении в бензольном кольце возможны три типа реакций в зависимости от природы атакующей частицы.

Радикальное замещение SR.

R•+H: С6Н5>R- С6Н5+ H•

Если атакующий реагент R•-радикал, несущий неспаренный электрон, то водород, связанный с атомом углерода ядра, отщепляется с одним из электронов электронной пары у-связи. Такой тип замещения называется радикальным. Реакция радикального замещения редко используется в ароматическом ряду.

Нуклеофильное замещение SN. При действии несущих отрицательный заряд нуклеофильных частиц на замещенный бензол С6Н5Х (где Х-заместитель) отщепляющаяся группа Х - уходит вместе с парой у -электронов, ранее осуществляющих ее связь с ядром:

Z-+ X: С6Н5> Z- С6Н5+Х-

Примером может служить реакция натриевой соли бензолсульфокислоты со щелочью. Эта реакция лежит в основе промышленного метода получения фенола:

Для успешного протекания реакций нуклеофильного замещения в ядре должен находится дополнительно один или лучше два сильных электроноакцепторных заместителя (-NO2, -SO3H ,-CF3)

Электрофильное замещение SE.

Все электрофилы являются кислотами Льюиса.

Общий вид реакций электрофильного замещения:

(катионный электрофил)

(нейтральный электрофил)

Во всех реакциях этого типа атакующий реагент (Y+) несет на атоме, вступающем в связь с углеродным атомом бензольного ядра, положительный заряд либо имеет ярко выраженный катионоидный характер и образует новую связь за счет пары электронов, ранее осуществлявшей связь С-Н. Замещающийся атом водорода уходит в виде протона:

Методы получения

Природные источники ароматических углеводородов. В промышленности ароматические углеводороды получают путем сухой перегонки каменного угля, а также из нефти.

Получение из каменного угля. Каменный уголь - один из наиболее ценных для народного хозяйства ископаемых продуктов, добываемых в огромных количествах. Используют каменный уголь как топливо и как сырье для получения многих важных продуктов. По составу каменный уголь - сложное органическое вещество; в процессе сухой перегонки, т.е. при нагревании в печах без доступа воздуха, при температуре 1000оС и выше, он разлагается и образуются следующие основные продукты: а) кокс (75-80 %); б) коксовый газ (до 3,5 %) и г) аммиачная вода (содержащая в основном неорганические вещества, главным образом аммиак).

Кокс - твердый продукт, представляющий собой углерод с некоторой примесью золы. Используется в металлургии как восстановитель, для выделения металлов, в основном железа, из руд (в доменном процессе). До начала второй половины XIX в. сухую перегонку каменного угля производили почти исключительно с целью получения кокса, поэтому этот процесс называют также процессом коксования угля.

Коксовый газ - побочный продукт коксования углей. Иначе его называют светильным газом, т.к. первоначально его использовали лишь как горючее, преимущественно для освещения. Основные составные части коксового газа - метан (30-50 %) и водород (30-50 %); кроме того, он содержит значительное количество паров ароматических углеводородов. Путем поглощения маслом с последующей отгонкой из коксового газа выделяют сырой бензол (до 1,5 % от веса угля) - смесь ароматических углеводородов с температурой кипения до 160оС. Из сырого бензола ректификацией получают чистый бензол, толуол, смесь ксилолов. Этим способом добывают основное количество бензола. Таким образом, в настоящее время коксовый газ - не только горючее, но и ценный источник ароматических соединений.

Каменноугольная смола (или каменноугольный деготь) - темная вязкая жидкость с неприятным запахом. До середины XIX столетия была бросовым продуктом коксования углей и ее подвергали уничтожению. Оказалось же, что она содержит множество ценнейших в практическом отношении ароматических соединений. Поэтому в настоящее время каменноугольную смолу подвергают тщательной переработке. Путем перегонки ее разделяют на следующие фракции : 1) легкое масло, tкип до 160 оС (до 2 %); 2) среднее масло, tкип 160-230 оС (до 12 %); 3) тяжелое или креозотовое масло, tкип230-270 оС (до 10 %); 4) антраценовое или зеленое масло, tкип 270-360 оС (до 23 %); 5) пек - остаток от перегонки (до 60 %).

Из легкого масла получают бензол, толуол, ксилолы; из среднего - нафталин, фенолы, пиридин; из тяжелого - в основном нафталин; из антраценового - антрацен, фенантрен и др. Пек - черная твердая масса, размягчающаяся при нагревании; применяется как строительный материал, для покрытия дорог и т.д.

1. Получение из алифатических углеводородов. При пропускании алканов с неразветвленной цепью, имеющих не менее шести атомов углерода в молекуле, над нагретой платиной или оксидом хрома происходит дегидроциклизация -- образование арена с выделением водорода:

2. Дегидрирование циклоалканов. Реакция происходит при пропускании паров циклогексана и его гомологов над нагретой платиной:

3. Получение бензола тримеризацией ацетилена по методу Н.Д. Зелинского:

4.Получение гомологов бензола по реакции Фриделя--Крафтса: типичное электрофильное замещение в ароматическом ядре; роль катализатора сводится к генерации атакующей частицы -- алкил- или ацилкатиона. Ниже рассмотрены примеры взаимодействия бензола с этилхлоридом и хлорангидридом уксусной кислоты:

C2H5CI + AlCl3 > C2H5+ + [AICl4]?

C2H5+ + C6H6 > C6H5C2H5 + H+

CH3COCl + AlCl3 > CH3CO+ + [AlCl4]?

CH3CO+ + C6H6 > CH3COC6H5 + Н+

[AlCl4]? + Н+ > HCl + AlCl3

5. Сплавление солей ароматических кислот со щелочью:

4. Механизм реакций электрофильного замещения в ароматическом ряду

Для соединений ароматического характера, имеющих замкнутую р- электронную систему, наиболее характерны реакции с электрофильными агентами. С помощью кинетических методов, что большинство реакций электрофильного замещения в ароматическом ряду протекает по двухстадийному механизму. На первой, медленной стадии происходит нарушение ароматической системы и переход атакуемого атома углерода в состоянии sp3-гибридизации:

H

Х++ArH- Ar+

X

Вторая, быстрая, стадия сопровождается восстановлением ароматической структуры и вследствие выигрыша энергии протекает легко и быстро:

H

Ar+ + В-> ArХ+ ВН

X

Протекание первой стадии обычно осуществляется с промежуточным образованием так называемого р-комплекса. р -комплексы представляют собой координационные соединения, в которых донором являются ароматические соединения, имеющие легко поляризуемые р- электроны, а акцепторами- галогены, галогеноводороды, сильные минеральные кислоты, безводные галогениды некоторых металлов и другие соединения, имеющие по разным причинам большое сродство к электронам.

р -комплексы не являются обычными химическими соединениями, в которых электрофильная частица связывается ковалентной связью с конкретным атомом реагирующего вещества. Они построены объемно, так как наибольшая р-электронная плотность ароматических соединений расположена по обе стороны бензольного кольца:

Во многих случаях р-комплексы удалось идентифицировать, чаще всего с помощью спектральных методов.

В отличие от р-комплексов у-комплесы представляют собой истинно химические соединения, в которых электрофильный агент Х+ образует ковалентную связь за счет двух р-электронов одной из связей бензольного кольца. В у-комплексе один из атомов углерода бензольного кольца переходит в состояние sp3- гибридизации, в котором все четыре связи направлены под углом 1090. При этом нарушается симметрия бензольного кольца, а группа Х+ и атом водорода оказываются выведенными из плоскости кольца:

Оставшиеся четыре р- электрона бензольного кольца равномерно распределяются между пятью атомами углерода, образуя «структуру циклопентадиенилкатиона». Эта структура менее устойчива, чем ароматическая.

Электронодонорные заместители, повышая электронную плотность в ароматическом ядре, увеличивают стабильность как р-, так и у-комплекса при электрофильном замещении.

Реакции электрофильного замещения завершаются отщеплением от у-комплекса протона и восстановлением ароматической системы. Этот процесс происходит при участии обладающего основными свойствами аниона В-, присутствующего в реакционной среде, и сопровождается выделением энергии:

Образование р- и у-комплесов зависит от ароматической структуры и от типа электрофильной частицы.

Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии так называемой нитрующей смеси (смесь концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко:

Галогенирование. При галогенировании ароматических соединений обычно применяют катализаторы (безводные АlСl3, FeСl3, АlВr3), вызывающие поляризацию или даже гетеролитическую диссоциацию молекулы галогена:

Положительный конец диполя атакует ароматические соединения, а отрицательный входит в состав комплекса с катализатором:

Алкилирование по Фриделю--Крафтсу. Алкилирование ароматических соединений обычно проводят галогеналкилами в присутствии хлорида алюминия.

В качестве алкилирующих агентов могут применяться также непредельные соединения и спирты в присутствии сильных минеральных кислот. В этом случае роль кислоты состоит в том, чтобы алкен или спирт перевести в соответствующий карбокатион:

При алкилировании первичными спиртами почти всегда наблюдается изомеризация углеродного скелета, что связано с перегруппировкой первичных карбокатионов в более устойчивые вторичные и третичные:

Ацилирование. Введение остатка кислоты RCO-. В качестве ацилирующих агентов используют галогенангидриды и ангидриды кислот. Катализатором обычно служит хлорид алюминия:

Механизм реакций нуклеофильного замещения в ароматическом ряду

Общепринятый механизм нуклеофильного замещения в ароматическом ряду включает двухстадийное протекание реакции аналогично тому, как и у электрофильного замещения. Первая стадия- атака нуклеофилом

Y- атома углерода, обычно связанного с заместителем, приводящая к образованию промежуточного у-комплекса:

Х Y Х Y

В нем ароматическая система нарушена, так как тип гибридизации атома углерода в реакционном центре переходит из sp2 в sp3. На второй стадии отщепления Х- приводит к восстановлению ароматической системы, а результатом реакции является нуклеофильное замещение Х на Y.

Электроноакцепторные группы, находящиеся в бензольном ядре, такие, как NO2, NO, C? N, «объединяют» бензольное кольцо электронами, тем самым облегчая атаку бензольного кольца нуклеофильной частицей.

Делись добром ;)