logo
Анализ системы титанат алюминия – кордиерит

1.1 Термостойкость огнеупорных материалов

Термостойкость - это способность хрупких материалов и изделий противостоять термическим нагружениям, возникающим в результате термических (тепловых) воздействий. Термические напряжения в материале возникают в следующих случаях: при нестационарном нагреве (термоударе); в случае стационарного нагрева в неравномерном температурном поле-напряжение первого рода; а так же при нагреве многофазных материалов - напряжения второго рода, обусловленных разницей коэффициентов термческого расширения фаз, входящих в состав материала и объемными изменениями, происходящими в сложном материале при его нагревании [2].

Термостойкость определяется не только свойствами материала, но и условиями термонагружения, т.е. распределением и скоростью изменения температур в теле, а также условиями теплообмена на поверхности тела. По этой причине термостойкость принято оценивать в критериальной форме [3].

Существует два подхода к проблеме сопротивления термоудару. Первый, в основу которого легли работы Кингери, определяется теорией термоупругости. Критерий термостойкости выражается через совокупность следующих свойств материала:

R=ураст*(1-м)/(Е*б) (1)

RI=R*л (2)

RII=R*a, (3)

где ураст - предел прочности при растяжении,

Е - модуль Юнга,

б - коэффициент термического расширения,

м - коэффициент Пуансона,

л - коэффициент теплопроводности,

а - коэффициент температуропроводности.

Критерий R характеризует термостойкость при относительно высоких скоростях теплопередачи между телом и окружающей средой (при критерии Био > 20).

При низких скоростях теплопередачи (критерий Био < 20) исползуют критерий RI, а в случае, когда нагрев и охлаждение происходят с постоянной скоростью рассматривается вопрос о максимально допустимой скорости изменения температуры материалад,- критерий RII.

Термостойкость материала повышается с повышением теплопроводности (л) и температуропроводности (а). Эти показатели вводят в критерий термостойкости и получают новые критерии:

RI=R*л (4)

RII=R*a, (5)

Кингери предложил оценивать термостойкость разрушающим перепадом температур ДТраз, который зависит не только от совокупности свойств материала, определяемых R, но и от фактора формы тела gI, его характеристического размера r и коэффициента теплоотдачи от среды к поверхности тела к:

ДТраз.= RI* gI (6)

ДТраз.= RI* gI*(1/0,31 r*к) (7)

При высоких температурах происходит релаксация напряжений и увеличение термической стойкости. При этом различаются два температурных интервала: в первом материал считается идеально хрупким, во втором - материал рассматривается находящимся в вязкоупругом и вязкопластичном состоянии.

В теории термоупругости рассматривались идеализированные тела. Поэтому полученная экспериментально термостойкость удовлетворительно согласуется с расчетной лишь для узкого круга гомогенных материалов.

Второй подход к проблеме сопротивления термоудару заключается в оценке способности материала сопротивляться распространению разрушающей трещины.

Трещины, образующиеся в результате термических напряжений, могут оказывать значительное влияние на термостойкость хрупких материалов. Они разбивают материал на отдельные фрагменты, имеющие возможность в некоторой степени сдвигаться относительно друг друга. Это повышает податливость структуры и ослабляет в конечном счете действие термических напряжений, способствуя их релаксации. Микротрещины также позволяют зернам или кристаллам более свободно расширяться, благодаря чему в прилегающих к ним зонах уровень термических микроструктурных напряжений ниже. Характер влияния трещин зависит от их ориентации по отношению к возникающим термическим напряжениям.

Разрушение материала начинается с зарождения трещины и последующего роста зародившихся или уже имеющихся в материале трещин. Наличие в материале трещин может быть связано с технологией его получения, в частности, для многофазных огнеупорных материалов характерно возникновение трещин при отрыве связки от зерна [2].

Рассматривая разрушение при изгибе балки из хрупкого материала, можно выделить три стадии этого процесса. На первой стадии в материале происходит постепенное накопление энергии, приводящее к зарождению трещин или началу движения имеющейся трещины и дальнейшему контролируемому ее росту. Далее, на следующей стадии, происходит быстрый неконтролируемый рост трещины, на этот процесс расходуется часть запасенной в материале энергии. На заключительном этапе снова наблюдается контролируемый рост трещины вплоть до разрушения образца.

Впервые характеристики разрушения для сравнительной оценки сопротивления материалов под действием термического удара были использованы Хассельманом, предложившим критерии термостойкости RIII и RIV[4] .

RIII - представляет собой минимум имеющейся в момент разрыва упругой энергии. Чем выше R , тем меньше энергии способен накапливать материал при термическом нагружении и тем меньше, следовательно, будет степень его разрушения. RIV - показывает минимум степени распространения трещины в начале разрыва. Для плоского напряженного состояния:

RIII=E*у-2 (8)

RIV=E* уэф у-2 (9)

Для плоской деформации:

RIII=E/( у 2*(1-м)), (10)

RIV= RIII *yэф, где (11)

Уэф-эффективная поверхность энергии разрушения.

Критерий типа RIV относится к материалам с микротрещиноватой структурой. Однако в нем не учитывается зависимость разрушения от формы зерен, их взаимного расположения и свойств фаз, слагающих гетерогенный материал, от которых, как известно, термостойкость существенно зависит.

На механику разрушения материала существенное влияние оказывает микроструктура материала. Грубая межзеренная пористость оказывает сравнительно малое влияние на критический коэффициент интенсивности напряжений, в основном стремясь понизить его. Межзеренные поры, как правило, не задерживают движение трещины.

Сферические поры могли бы задерживать движение трещины посредством ее локального затупления в местах, где трещина пересекает пору.

Для характеристики термической стойкости тел с микротрещиноватой структурой обычно определяют характерные перепады температур: ДTI - перепад температур, необходимый для зарождения трещин, и ДTII - перепад температур, необходимый для распространения трещин.

Одним из способов повышения термостойкости является повышение вязкости разрушения. Вязкость разрушения огнеупорного материала может быть повышена за счет введения в оксидную матрицу в качестве препятствия распространению трещины второй фазы. Если при этом действительно наблюдается торможение трещины, то она стремится изогнуться между частицами, а это повышает напряжение распространения трещины. Предположение о возможности такого явления искривления трещины было впервые выдвинуто Лангом и подтверждено затем с помощью модуляции ультразвука Грином и др.

Разница температурных коэффициентов линейного расширения включения и матрицы приводит к большим термическим напряжениям на межфазной границе, которые возникают при охлаждении после обжига. Разница же модулей сдвига G включения и матрицы приводит к механическим напряжениям на поверхности раздела в результате приложения напряжения. Они могут достигать значительной величины, способствовать повышению термостойкости.

Указывается, что для достижения максимальной термической стойкости должно быть соблюдено следующее условие подбора компонентов:

б12, при E1<E2;

б1<a2, при Е12,

где б12 коэффициенты термического расширения первой и второй фазы соответственно;

Ei, E2 -модули Юнга первой и второй фазы соответственно.

Появлению остаточных напряжений вблизи границ зерен в процессе охлаждения материала способствует также анизотропия физических свойств, и, в частности теплового расширения. Эти напряжения приводят к формированию развитой микротрещиноватой структуры, которая, как уже отмечалось, характеризуется высоким значением вязкости разрушения.

Выбор или создание материала с требуемой термостойкостью для данных условий службы представляет собой довольно сложную задачу. Вследствие наличия и сложности взаимодействия множества факторов, воздействующих на процесс термического разрушения твердых тел, единую теорию термостойкости не сформировали [3].