Анализ биологических тканей и жидкостей

курсовая работа

Электроаналитические методы в биомедицинских исследованиях

Еще на заре развития электрохимических методов анализа (ЭМА) объекты биологии, медицины и фармации привлекали внимание исследователей. Это прежде всего относится к классической полярографии, в меньшей мере к потенциометрии и вольтамперометрии. В 30-х годах XX века чешский исследователь Брдичка обнаружил каталитические волны белков в аммонийно-аммиачных буферных растворах в присутствии солей кобальта. Впоследствии этот метод был применен в медицине для диагностики рака, а затем и для других заболеваний. Он известен как серологическая реакция Брдички. Достижения классичекой полярографии в биологии, медицине и фармации обобщены в монографии М. Бржезины и П. Зумана, которая оказала самое плодотворное влияние на развитие этой области ЭМА. Большая часть пионерских работ в этой области анализа были выполнены исследователями, которые имели базовое образование фармацевта, что не могло не сказаться на применении этого метода в биомедицинских исследованиях.. С помощью методов ВА определяли различные метаболиты, белки, идентефицировали ферменты, оцнивали их активность по продуктам ферментативных реакций, исследовали процессы в микроорганизмах, суюклеточных культурах, в тканях по продуктам их жизнедеятельности. Кроме того, эти методы применяли для получения электрохимических характеристик веществ, участвующих в переносе электронов в процессе дыхания и фотосинтеза, при моделировании окислительно восстановительных процессов в живой клетке, а также для исследования структурных особенностей биологических макромолекул и биомембран и т.д. В 60-х годах с появлением ионоселективных электродов (ИСЭ) стало возможным потенциометрическое определение катионов и анионов как in vitro, так и in vivoв растворах, включая цельную кровь.

Прогресс в области ионометрии и разработки новых ИСЭ с улучшенными характеристиками, в частности, на основе полевых транзисторов привел к появлению разнообразных потенциометрических сенсоров, устройств и приборов для определения органических и неорганических, в том числе и лекарственных, соединений в различных условиях (в потоке жидкости, в очень малых объемах растворов и т.д.). Современная биохимическая лаборатория имеет возможность использовать ионометрические установки как для прямого определения, так и для потенциометрического титрования в водных и неводных средах.

Достигнутые успехи не означали отсутствие проблем, обусловленных перманентными требованиями к необходимой воспроизводимости, надежности, чувствительности, а также селективности определений, особенно для электродов-сенсоров с амперометрическим откликом, которые порой трудно достигались, поскольку компоненты, определялись в сложных по составу матрицах. Потенциометрические сенсоры на основе мембран с включенными в них электроактивными органическими соединениями показали достаточно высокую селективность при определении этих же соединений в испытуемом растворе. Их используют при анализе порошков, суппозитарий, таблеток и других лекарственных форм; при этом не требуется сложная пробоподготовка.

Новый этап развития ЭМА применительно к обсуждаемым объектам связан с применением имообилизированных биоматериалов как реагентов нового поколения для модифицирования электродов и создания на их основе биосенсоров.

Функциональо биосенсоры сопоставимы с датчиками живого организма - биорецепторами, способными преобразовывать все типы сигналов, поступающие из окружающей среды, в электрические, которые легко измерить.

Биосенсоры, с одной стороны, можно рассматривать как устройства, работающие на принципах биологического распознавания определяемых молекул или других частиц. Поэтому их можно отнести к категориям биологических и биохимических методов анализа.

С другой стороны, биосенсоры - это биоэлектронное устройство, включающее чувствительный элемент, тесно связанный с физическим преобразователем либо интегрированный с ним, чаще всего с электродом. Интерес к биосенсорам обусловлен их широким потенциальным применением в контроле состояния окружающей среды и охране здоровья человека.

Многообразие биосенсоров объясняется различной природой биоматериала, типом физического преобразователя, способами регистрации электрического сигнала. Сама их конструкция может быть тесно связана с применением.

Что касается метода регистрации, то при интегральной оценке развития ЭМА периода последних 5-15 лет в аспектах биологии и медицины, можно увидеть возрастание удельного веса ВА и родственных методов среди других.

Сейчас наблюдается заметное проникновение идей супрамолекулярной химии в область ЭМА. Молекулярный дизайн и нанотехнология в создании новых электродов и на их основе микроаналитических систем для целей медицинской диагностики теперь рассматривают как еще один путь развития электроанализа и расширения сфер его применения. Самоорганизующиеся монослои (СОМС) на поверхности электродов - это частный случай высокоупорядоченных слоев с точно контролируемой толщиной и направленной ориентацией молекул - представляют уникальную возможность для изучения фунтдаментальных аспектов электроаналитической химии, включая процессы накопления определяемого компонента, селективность СОМС, факторы, влияющие на величину сигнала.

С помощью субстратных биосенсоров определяют широкий круг различных физиологически важных соединений или их метаболитов в растворе или непосредственно в организме человека: глюкозу, мочевину, спирты, органические кислоты и т.д., и решают проблему диагностики заболеваний.

Структура биоаналитики: методы электроанализа в определении компонентов в объемах биомедицинского назначения и фармации

Способ определения

Определяемый компонент

Тип сенсора

Потенциометрия

H+, K+, NH4+, Na+, Cl-, Mg+, Ca+, NO2-, NO3-, катионы и анионы органичеких оснований и кислот, аскорбиновая кислота, спирты, мочевина, физиологически активные амины, антибиотики, кетоновые тела и др.

Стеклянные электроды, твердотельные электроды, ИСЭ, ИСЭ не основе полевых транзисторов, газочувствительный эл-д, ИСЭ на основе полимерных мембран с иммобилизированным активным веществом, бислойных липидныхз мембран, биосенсоры и др.

Амперометрия (вольтамперометрия и ее модификации)

NO, антиоксиданты, аскорбиновая кислота, ферменты, ДНК, интеркаляторы, антитела, возбудители болезней (вирусы), лекарственные соединения и др.

ХМЭ-сенсоры с иммобилизированными реагентами, в том числе с откликом на принципах полеклярного распознавания, ДНК-сенсоры, иммуносенсоры, биосенсоры, амперометрические сенсоры с СОМС, бислойными мембранами, реконструированными ферментами и др.

Амперометрия в сочетании с ВЭЖХ, ПХА, микродиализом и капиллярным электрофорезом (детекторы в потоке жидкости)

Нейропереносчики, катехоламины, компоненты плазмы крова, межклеточной жидкости и клеток в микрообъемах жидкости, лекарственные средства (вопросы фармакокинетики)

Ультрамикроэлектроды (металлические, угольно-волоконные, screen-printed), угольно-пастовые электроды, металлические и металлоксидные электроды с каталитическим откликом, электродная система жидкость/жидкость и др.

Хроноамперометрия

Гормоны, антибиотики, интеркаляторы, лекарственные соединения

Сенсоры на основе ХМЭ, СОМС, бислойные липидные мембраны и др.

Кулонометрия (кулонометрические детекторы)

Объекты фармации, нейропереносчики, антиоксиданты

Активные металлические электроды, инертные электроды+источник кулонометрического титранта

Интерес представляет амперометрический сенсор на гемоглобин в цельной крови. Его быстрый отклик стабилен и воспроизводим и обусловлен окислением гемоглобина при фиксированном потенциале на стеглоуглеродном электроде, покрытом слоем полимера на основе метиловой сини. Этот полимер образуется на поверхности электрода при циклическом изменении потенциала в некотором диапазоне, зависящем от состава раствора.

Из последних достижений в конструировании электрохимических сенсоров можно отметить создание с использованием планарной технологии микросенсорных батарей на основе ИСЭ для определения концентраций ионов водорода и калия в кровотоке работающего сердца. Такие устойства могут найти применение в медицине, в частности при хирургическом вмешательстве в области миокарда.

В таблице в качестве примера дан перечень основных компонентов, определяемых методами электроанализа в объектах биомедицинского назначения и фармации, который в целом отражает структуру области биоэлектроники.

Интерес представляют электрохимические сенсоры на основе ДНК и их фрагментов. Отклик таких ДНК-сенсоров формируется по-разному. Если иммобилизирована однонитивая ДНК на поверхности электрода, то при введении в раствор она гибридизируется с комплиментарной нитью определяемого компонента и дает амперометрический отклик. Однонитивая ДНК может быть включена при этом либо в угольную пасту электрода, либо иммобилизированна на поверхности золотого электрода за счет самообразующихся слоев с помощью меркаптогексильного фрагмента. Вместо однонитивой ДНК в сенсорах используют их фиксированный фрагмент, т.е. последовательность оснований, или олигомер (20 или 40 оснований), полученный синтетически. Чтобы зафискировать событие взаимодействия олигомера с определяемым компонентом, на электроде закрепляют метку - чаще всего какой-нибудь комплекс металла ( руьений, кобальт, железо и т.д.) с органическим лигандом (димирил, фенантролин), восстанавливающийся на этом электроде. Ток этой реакции чувствителен к событию комплиментарного взаимодействия.

ДНК-сенсор конструируют и на основе двухнитивой ДНК. В этом случае возможно определение тех компонентов, которые нарушают структуру ДНК как интеркаляторы. Возможны и другие прощессы, нарушающие структуру ДНК, что отражается на электрохимических свойствах этого типа биослоя.

Большинство рассмотренных биосенсоров дают устойчивый отклик не только в условиях стационарной жидкости, но и в потоке.

Сейчас в ряде областей аналитической химии, биологии и медицины ощущается потребность в миниатюрных сенсорах на основе электрохимических микропреобразователей, созданных по технологии интегральных схем. Миниатюризация сенсоров в сочетании в их высокой селективностью и чувствительностью, достигаемых за счет использования биоматериалов, позволит решать важные задачи биологии и медицины, в том числе и определение отдельных крупных молекул.

Делись добром ;)