logo
Адсорбенты и ионные обменники в процессах очистки природных и сточных вод

ПОВЕДЕНИЕ ХИМИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ В ВОДЕ

Органические загрязнители

Десятки миллионов тонн органических соединений, в том числе миллионы тонн ПАВ, ежегодно поступают в атмосферу и водоемы из многочисленных и разнообразных источников (испарение, потери и неполное сгорание химического органического топлива, городские и промышленные жидкие, твердые и газообразные отходы и т.д.). В окружающей среде они подвергаются воздействию различных физико-химических и биологических агентов. Многие из них распадаются за сравнительно короткий срок (10-100 дней) с образованием промежуточных продуктов, в том числе метаболитов - продуктов обмена веществ в живых организмах, вплоть до полной минерализации. В ряде случаев промежуточные продукты разложения органических соединений оказываются более токсичными загрязнителями, чем исходные вещества, и система подвергается вторичному химическому загрязнению.

Особую опасность представляют биологически стойкие трудноокисляемые органические соединения. Они способны накапливаться в окружающей среде и в течении длительного времени оказывать токсическое воздействие на живые организмы (эффект долгосрочного действия).

Пестициды

Ежегодно в окружающую среду вводится 2 млн. т пестицидов (хлорорганические и фосфорорганические соединения, производные карбаматов, хлорфенксикислот). Даже очень малые концентрации пестицидов токсичны и придают воде неприятные привкусы и запахи. Многие из них разрушаются очень медленно (иногда в течении нескольких лет). Часто продукты распада пестицидов достаточно стойки и также могут оказывать токсическое действие.

Поскольку значительная часть стойких загрязнителей поступает в водоемы с промышленными, сельскохозяйственными и бытовыми сточными водами, то очистка и повторное использование этих вод имеют большое экологическое значение и осуществляются во многих странах. В связи с малыми концентрациями стойких органических веществ в сточных водах и их преобладающей олеофильностью наибольшее применение находят методы очистки, основанные на сорбции на природных ионитах (глинистые минералы и цеолиты), синтетических макропористых ионитах и активных углях.

Нефтепродукты

Особую группу химических загрязнителей составляют нефтепродукты. Общая масса нефтепродуктов, попадающих ежегодно в моря и океаны, оценивается по данным американских ученых в 6.1 млн. т, из них 2.1 млн. т составляют потери при транспортировании нефти, 1.9 млн. т выносится реками, остальное поступает с городскими и промышленными отходами прибрежных районов и из природных источников.

Степень воздействия нефтепродуктов на водную среду определяется прежде всего их составом. В высокомолекулярных фракциях нефти содержится до 5 % серы, 1% азота и кислорода, а также различные комплексообразущие металлы. В водной среде нефтепродукты образуют пленку, которая взаимодействует с естественной поверхностной пленкой, увеличивая ее толщину и образуя квазиравновесную систему. Одна тонна нефти может растекаться и покрыть поверхность воды, равную 20 км2, в течение 6-7 суток. До 25 % от общей массы (легколетучие компоненты) испаряется за несколько дней. Тяжелые фракции оседают на дно водоема, изменяя биологические особенности среды обитания.

Тяжелые металлы

К стойким химическим загрязнителям кумулятивного действия со специфическими токсическими свойствами относятся и тяжелые металлы. Тройку наиболее экологически опасных тяжелых металлов составляют свинец, ртуть и кадмий. Более 35 видов металлов извлекается в составе руд и химического топлива из недр Земли на ее поверхность.

В процессе переработки руд, сжигания энергоносителей, потребления тяжелых металлов огромные их количества поступают в атмосферу и водоемы в виде отходов.

Например, в Мировой океан из атмосферы ежегодно поступает 200 тыс. т свинца. А антропогенное накопление ртути в биосфере (главным образом в гидросфере) к настоящему времени оценивается в 1 млн. т. Потери кадмия в биосферу составляет 5 тыс. т/год.

Поступая в водную среду, тяжелые металлы вступают во взаимодействие с другими компонентами среды, образуя гидратированные ионы, оксигидраты, ионные пары, комплексные неорганические и органические соединения. Конкретная форма существования металлов зависит от их природы, природы ионов и молекул, конкурирующих за место лиганда, pH, температуры и ионности среды.

Многие тяжелые металлы образуют так называемые синергетические смеси, которые оказывают на водные организмы токсическое воздействие, значительно превышающее сумму действий отдельных компонентов.

Поведение тяжелых металлов в реальных средах сложно и малоисследовано. Вместе с тем их накопление в живой природе вызывает серьезное беспокойство во всем мире. Поэтому поступление тяжелых металлов в атмосферу , водоемы и на земледельческие поля должно быть приостановлено и взято под строгий контроль. Все источники тяжелых металлов могут быть ликвидированы путем организации на предприятиях систем очистки и повторного использования сточных вод.

Биогенные вещества

Особую опасность представляют соединения азота и фосфора, в больших количествах попадающие в водоемы с бытовыми промышленными сточными водами, из атмосферы (оксиды азота), а также вследствие вымывания минеральных и органических удобрений из почвы. В Результате смыва удобрений в водоемы мира ежегодно поступает от 3 до 6 млн. т P2O5.

Попадая в водоемы, биогенные элементы стимулируют развитие сине-зеленых водорослей. Происходит эвтрофикация (цветение) водоемов. Вследствие массового гниения водорослей в воде появляются сероводород, меркаптаны, фенолы и другие токсичные продукы, исчезает кислород, вода становится мертвой.

Неорганические соли

Отдельную группу химических загрязнителей составляют неорганические соли. Несмотря на малую токсичность многих растворимых солей, все возрастающее накопление их в природных пресных водах вызывает ряд серьезных экономических и экологических проблем: увеличение затрат на водоподготовку на электростанциях и промышленных предприятиях, уменьшение запасов пресной воды, пригодной для полива сельскохозяйственных угодий, ухудшение условий нереста рыб, ухудшение качества питьевой воды и т.д. Основными источниками поступления солей в водоемы являются дренажные сельскохозяйственные воды, промышленные сточные воды, в том числе продувочные воды систем водоснабжения, регенерационные растворы и промывные воды установок водоподготовки электростанций и др. В связи с этим опреснение дренажных вод, обессоливание продувочных, поверхностных, промывных, рудничных и других сточных вод в промышленности, создание бессточных схем водоподготовки и замкнутых водооборотных систем с обессоливанием подпиточной воды являются эффективными решениями данной проблемы, в реализации которых главная роль принадлежит ионному обмену и электродиализу.

ИЗМЕНЕНИЕ КАЧЕСТВА ПРИРОДНЫХ ВОД

ВСЛЕДСТВИЕ АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ

Можно выделить следующие наиболее очевидные тенденции в изменении качества природных вод под влиянием хозяйственной деятельности людей:

Снижается рН пресных вод в результате их загрязнения серной и азотной кислотами из атмосферы, увеличивается содержание в них сульфатов и нитратов.

Подкисленные дождевые воды, стекая по поверхности суши и просачиваясь в нижние слои почвы, лучше растворяют карбонатные и другие породы, что вызывает увеличение содержания ионов кальция, магния, кремния в подземных и речных водах.

Повышается содержание в природных водах фосфатов (>0.1 мг/л), нитратов, нитритов и аммонийного азота.

Повышается содержание в природных водах ионов тяжелых металлов, прежде всего свинца, кадмия, ртути, мышьяка и цинка.

Повышается содержание солей в поверхностных и подземных водах в результате их поступления со сточными водами, из атмосферы за счет смыва твердых расходов. Например, солесодержание многих рек ежегодно повышается на 30-50 мг/л и более. Из 1000 т городских отходов в грунтовые воды попадает до 8 т растворимых солей.

Увеличивается содержание в водах органических соединений, прежде всего биологических стойких, в том числе синтетических ПАВ, гетероорганических соединений (пестицидов и продуктов их распада) и других токсичных, канцерогенных и мутагенных веществ.

Катастрофически снижается содержание кислорода в природных водах, прежде всего в результате повышения его расхода на окислительные процессы, связанные с эвтрофикацией водоемов, с минерализацией органических соединений, а также вследствие загрязнения поверхности водоемов гидрофобными веществами и сокращения доступа кислорода из атмосферы. В отсутствии кислорода в воде развиваются восстановительные процессы, в частности сульфаты восстанавливаются до сероводорода.

Существует потенциальная опасность загрязнения природных вод радиоактивными изотопами химических элементов.

ПРИМЕНЕНИЕ СОРБЦИОННЫХ МЕТОДОВ

ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД

Из выше изложенного следует, что реальные сточные воды - это не чистые стабильные растворы, а гетерогенная смесь растворенных, коллоидных и взвешенных в воде примесей органического и неорганического характера, многие из которых нестабильны, окисляются

Практика работы систем очистки сточных вод показывает, что сорбционная обработка целесообразна как "финишная" операция, после механической и других более дешевых видов очистки от грубодисперсных, коллоидных и части растворенных примесей. Обычная оптимальная последовательность процессов физико-химической очистки: коагуляция - отстаивание (флотация) - фильтрование - сорбция.

Так, например, обессоливание природных и сточных вод целесообразно проводить на ионитах в случае исходного солесодержания до 1 г/л. Если регенерационные растворы перерабатываются в полезную продукцию то ионный обмен успешно может быть использован для глубокого воды с исходным солесодержанием до 2 г/л.

Создание комбинированных схем, включающих предварительную коагуляцию и осветление воды позволяет в несколько раз снизить расход активного угля на локальных станциях водоподготовки, тем самым решить технико-экономическую проблему обеспечения отдельных районов дополнительными водными ресурсами в обозримом будущем.